

Environmental Impact Assessment Report

Volume 4

Appendix 10.5 Offshore Ornithology Baseline Characterisation Report OUR VISION

To create a world powered by renewable energy

Baseline Characterisation Report

Codling Wind Park Limited: Offshore and intertidal Ornithology

19 April 2024 1301516

natural ' power

Codling Wind Park Limited

Document history

Author	Graeme Cook, Principal Offshore Ornithologist	18 April 2024
	Fiona Morton, Senior Offshore Ornithologist	
Checked	Chris Pendlebury, Director of Offshore Consenting & Environment	19 April 2024
Approved	Chris Pendlebury, Director of Offshore Consenting & Environment	19 April 2024

Client Details	
Contact	Sean Leake
Client Name	Codling Wind Park Limited
Address	Codling Wind Park Ltd Trintech Building 2nd Floor South County Business Park Leopardstown Dublin D18 H5H9

Issue	Date	Revision Details
А	14 February 2023	First issue to client
В	2 February 2024	Second issue to client
С	19 April 2024	Final for issue

Local Office:

First Floor Suite 6, The Mall Beacon Court Sandyford Dublin 18 Tel: +353 (0) 169 713 44 Registered Office:

The Natural Power Consultants Limited The Green House Forrest Estate, Dalry Castle Douglas, Kirkcudbrightshire DG7 3XS

Reg No: SC177881

VAT No: GB 243 6926 48

Contents

1.	Intro	duction	1
	1.1.	Study area	4
2.	Offsh	nore ornithology	7
	2.1.	Summary of data sources	7
	2.2.	Historic site-specific baseline characterisation surveys	9
	2.3.	Existing data sources	12
	2.4.	Contemporary site-specific baseline characterisation surveys	14
	2.5.	Regional population estimates	21
3.	Inter	tidal ornithology	39
	3.1.	Summary of data sources	39
	3.2.	Existing data sources	40
	3.3.	Contemporary site-specific baseline characterisation surveys	47
4.	Spec	cies recorded	50
	4.1.	Offshore ornithology	50
	4.2.	Intertidal ornithology	51
5.	Spec	cies accounts	58
	5.1.	Offshore ornithology	58
	5.2.	Intertidal Ornithology	122
6.	Refe	rences	223
Арр	endice	S	225
Α.	Appo to spe	rtionment proportions used to assign records not identified ecies level	225
В.	Color devia breec	nies within mean-maximum foraging range plus 1 standard tion of array site, which were used to define regional ling populations	227

List of tables

Table 2.1 Data sou for the Project	rces for offshore ornithology baseline characterisation
Table 2.2: Summer ESAS surveys unde	d totals of each species recorded during boat-based ertaken between April 2013 and April 201411
Table 2.3: Summe surveys of the wes winter 2016/17 (Jes	d totals of species recorded during low level aerial tern Irish Sea during summer and autumn 2016 and sopp <i>et al.</i> 2018)12
Table 2.4: Estimate Irish Sea area cove 2016 and winter 20	d total abundances of each species within the western red by ObSERVE surveys during summer and autumn 16/17 (Jessopp <i>et al.</i> 2018)13
Table 2.5: Total nun in the array site plus	ber of birds of each species recorded by ESAS surveys s 4 km buffer14
Table 2.6: Dates, tir array site plus 4 km	nes and survey conditions for contemporary DAS of the buffer14
Table 2.7: Dates, tin ESAS surveys of th	nes and survey conditions for contemporary boat-based e array site plus 4 km buffer17
Table 2.8: Survey e	ffort per survey for all sites19
Table 2.9: Bio-seas presented in Sect otherwise	ons used as the basis for the detailed species accounts ion 5, based on Furness (2015), unless specified 21
Table 2.10: Non-b seasonal population	reeding season BDMPS region selections and bio- ns24
Table 2.11 Parame	eters used to calculate Irish component of BDMPS ss (2015)25
Table 2.12: from Furness, 2015	Irish (RoI) component of BDMPS population (removed , BDMPS population)26
Table 2.13: adapted BDMPS po	Parameters used to calculate Irish component of pulation
Table 2.14 Demogra calculate stable age ratios and average	aphic rates (from Horswill and Robinson, 2015) used to e population age class proportions, immature to adult mortality rates
Table 2.15: Jessopp <i>et al</i> ., 2018	Calculating Western Irish Sea diver populations from 331
Table 2.16:	Adapted Irish component of BDMPS population31
Table 2.17: components	Updated regional populations including adapted Irish 32
Table 2.18: Deviation (SD) for	Mean-maximum foraging range + 1 Standard seabird species (from Woodward <i>et al.</i> , 2019) and

resultant estimates of 34	numbers of breeding adults withing foraging range
Table 2.19:ReMethod 135	egional breeding season population estimates using
Table 2.20:ReMethod 236	egional breeding season population estimates using
Table 2.21: Sp used for impact assess	becies specific bio-seasonal population estimates sment
Table 3.1: Data source for the Project	es for intertidal ornithology baseline characterisation
Table 3.2: All Dublin 2020/21	Bay I-WeBS data: annual peak counts 2016/17-
Table 3.3: South Dubli	n Bay I-WeBS data: Mean monthly counts43
Table 3.4: Peak coun South Dublin Bay 2013	ts from post-breeding tern aggregation surveys in 3 – 201845
Table 3.5: Tidal landfa	Il bird survey details47
Table 3.6: Post-breedi	ng tern aggregation surveys48
Table 4.1: Seabird spe boat-based surveys of	ecies recorded during site-specific digital aerial and the array site and 4 km buffer50
Table 4.2: Bird speci surveys of the OECC in	es recorded during site-specific intertidal landfall ntertidal landfall location in South Dublin Bay52
Table 4.3: Tern spec surveys of the Project	ies recorded during site-specific intertidal landfall landfall landfall location in South Dublin Bay57
Table 5.1: Kittiwake abundances within the digital aerial survey	treated counts and estimated densities and e array site and array site plus 2 km buffer for each
Table 5.2: Kittiwake abundances within the boat-based ESAS surv	treated counts and estimated densities and array site and array site plus a 2 km buffer for each vey
Table 5.3: Kittiwake mo DAS data	onthly estimated flight densities within array site from
Table 5.4: Kittiwake bi array site and array site ESAS survey data	o-seasonal mean peak abundances (individuals) in e plus a 2 km buffer from DAS data and boat-based
Table 5.5: Common abundances within the digital aerial survey	gull treated counts and estimated densities and e array site and array site plus 2 km buffer for each
Table 5.6: Common abundances within the for each boat-based E	gull treated counts and estimated densities and array site only and the array site plus a 2 km buffer SAS survey

 Table 5.17: Great black-backed gull treated counts and estimated densities

 and abundances within the array site and array site plus 2 km buffer for

 each digital aerial survey......70

 Table 5.40: Sandwich tern monthly estimated flight densities within array site from DAS data
 87

Table 5.60: Great northern diver treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey......103

Table 5.64: Fulmar treated counts and estimated densities andabundances within the array site only and the array site plus a 2 km bufferfor each boat-based ESAS survey.107

Table 5.65: Fulmar monthly estimated flight densities within array site fromDAS data.108

 Table 5.69: Manx shearwater monthly estimated flight densities within array site from DAS data

 111

 Table 5.73: Gannet monthly estimated flight densities within array site from

 DAS data

 .114

 Table 5.77: Cormorant monthly estimated flight densities within array site

 from DAS data

 117

Table 5.81: Shag monthly estimated flight densities within array site from DAS data .120
Table 5.82: Shag bio-seasonal mean peak abundances (individuals) inarray site and the array site plus a 2 km buffer from DAS data and boat-based ESAS survey data120
Table 5.83: Other seabird species recorded within the array site and buffersduring DAS and boat-based ESAS surveys120
Table 5.84: Total counts of light-bellied brent goose per survey – South Dublin Bay survey area 122
Table 5.85: Total counts of Shelduck per survey – South Dublin Bay survey area 125
Table 5.86: Shoveler (SV) and teal (T.) per survey – South Dublin Bay survey area
Table 5.87: Total counts of common scoter per survey – South Dublin Bay survey area
Table 5.88: Total counts of red-breasted merganser per survey – SouthDublin Bay survey area135
Table 5.89: Total counts of red-throated diver per survey – South Dublin Bay survey area 138
Table 5.90: Total counts of great crested grebe per survey – South DublinBay survey area141
Table 5.91: Total counts of grey heron per survey – South Dublin Bay survey area
Table 5.92: Total counts of little egret per survey – South Dublin Bay survey area147
Table 5.93: Total counts of shag per survey – South Dublin Bay survey area
Table 5.94: Total counts of cormorant per survey – South Dublin Bay survey area 153
Table 5.95: Total counts of oystercatcher per survey – South Dublin Baysurvey area
Table 5.96: Total counts of golden plover per survey – South Dublin Baysurvey area
Table 5.97: Total counts of grey plover per survey – South Dublin Baysurvey area
Table 5.98: Total counts of ringed plover per survey – South Dublin Bay survey area
Table 5.99: Total counts of curlew per survey – South Dublin Bay survey area

Table 5.100: Total counts of bar-tailed godwit per survey – South DublinBay survey area171
Table 5.101: Total counts of black-tailed godwit per survey – South Dublin Bay survey area174
Table 5.102: Total counts of turnstone per survey – South Dublin Bay survey area
Table 5.103: Total counts of knot per survey – South Dublin Bay survey area
Table 5.104: Total counts of sanderling per survey – South Dublin Bay survey area
Table 5.105: Total counts of dunlin per survey – South Dublin Bay survey area186
Table 5.106: Total counts of redshank per survey – South Dublin Bay survey area
Table 5.107: Total counts of greenshank per survey – South Dublin Bay survey area
Table 5.108: Total counts of black-headed gull per survey – South Dublin Bay survey area
Table 5.109: Total counts of Mediterranean gull per survey – South Dublin Bay survey area
Table 5.110: Total counts of common gull per survey – South Dublin Baysurvey area
Table 5.111: Total counts of great black-backed gull per survey – SouthDublin Bay survey area
Table 5.112: Total counts of herring gull per survey – South Dublin Bay survey area
Table 5.113: Total counts of lesser black-backed gull per survey – South Dublin Bay survey area 210
Table 5.114: Total counts of Sandwich tern per survey – South Dublin Bay survey area213
Table 5.115: Total counts of common, Arctic and roseate tern per survey –South Dublin Bay survey area217
Table 5.116: Total counts of black guillemot per survey – South Dublin Bay survey area
Table A.1: Apportionment proportions used to assign DAS records not identified to species level
Table A.2: Apportionment proportions used to assign boat-based records not identified to species level 226

List of figures

Figure 1.1: Project location1
Figure 1.2: Area covered and transects used during contemporary Digital Aerial and Boat-based ESAS surveys
Figure 1.3: Area covered during contemporary intertidal landfall surveys during diurnal periods for wildfowl and waders and crepuscular periods for post-breeding tern roosting aggregations
Figure 2.1: Area covered boat-based ESAS surveys undertaken between April 2013 and April 2014
Figure 3.1: Dublin Bay I-WeBS sub-sites and subsites within South Dublin Bay area for which additional I-WeBS data was obtained from BWI41
Figure 3.2: Areas within South Dublin Bay utilised by post-breeding roosting tern aggregations as described in Merne et al., 2008 and during surveys within 2013-16, 2016 and 201746
Figure 5.1: Annual variation in average counts of light-bellied brent geese
Figure 5.2: Spatial variation in frequency of landfall survey area site usage by light-bellied brent goose during baseline surveys
Figure 5.3: Annual variation in average counts of shelduck126
Figure 5.4: Spatial variation in frequency of landfall survey area site usage by shelduck during baseline surveys
Figure 5.5: Annual variation in average counts of shoveler and teal129
Figure 5.6 Spatial variation in frequency of landfall survey area site usage by shoveler during baseline surveys
Figure 5.7: Spatial variation in frequency of landfall survey area site usage by teal during baseline surveys
Figure 5.8: Annual variation in average counts of common scoter133
Figure 5.9: Spatial variation in frequency of landfall survey area site usage by common scoter during baseline surveys
Figure 5.10: Annual variation in average counts of red-breasted merganser
Figure 5.11: Spatial variation in frequency of landfall survey area site usage by red-breasted merganser during baseline surveys
Figure 5.12: Annual variation in average counts of red-throated diver139
Figure 5.13: Spatial variation in frequency of landfall survey area site usage by red-throated diver during baseline surveys
Figure 5.14: Annual variation in average counts of great crested grebe 142
Figure 5.15: Spatial variation in frequency of landfall survey area site usage by great crested grebe during baseline surveys

Figure 5.16: Annual variation in average counts of grey heron145
Figure 5.17: Spatial variation in frequency of landfall survey area site usage by grey heron during baseline surveys
Figure 5.18: Annual variation in average counts of little egret148
Figure 5.19: Spatial variation in frequency of landfall survey area site usage by little egret during baseline surveys
Figure 5.20: Annual variation in average counts of shag151
Figure 5.21: Spatial variation in frequency of landfall survey area site usage by shag during baseline surveys
Figure 5.22: Annual variation in average counts of cormorant154
Figure 5.23: Spatial variation in frequency of landfall survey area site usage by cormorant during baseline surveys
Figure 5.24: Annual variation in average counts of oystercatcher157
Figure 5.25: Spatial variation in frequency of landfall survey area site usage by oystercatcher during baseline surveys
Figure 5.26: Annual variation in average counts of golden plover160
Figure 5.27: Spatial variation in frequency of landfall survey area site usage by golden plover during baseline surveys
Figure 5.28: Annual variation in average counts of grey plover163
Figure 5.29: Spatial variation in frequency of landfall survey area site usage by grey plover during baseline surveys
Figure 5.30: Annual variation in average counts of ringed plover
Figure 5.31: Spatial variation in frequency of landfall survey area site usage by ringed plover during baseline surveys
Figure 5.32: Annual variation in average counts of curlew169
Figure 5.33: Spatial variation in frequency of landfall survey area site usage by curlew during baseline surveys
Figure 5.34: Annual variation in average counts of bar-tailed godwit172
Figure 5.35 Spatial variation in frequency of landfall survey area site usage by bar-tailed godwit during baseline surveys
Figure 5.36: Annual variation in average counts of black-tailed godwit Annual variation in average counts of black-tailed godwit175
Figure 5.37: Spatial variation in frequency of landfall survey area site usage by black-tailed godwit during baseline surveys
Figure 5.38: Annual variation in average counts of turnstone178
Figure 5.39: Spatial variation in frequency of landfall survey area site usage by turnstone during baseline surveys
Figure 5.40 Annual variation in average counts of knot

Figure 5.41 Spatial variation in frequency of landfall survey area site usage by knot during baseline surveys
Figure 5.42: Annual variation in average counts of sanderling
Figure 5.43 Spatial variation in frequency of landfall survey area site usage by sanderling during baseline surveys
Figure 5.44 Annual variation in average counts of dunlin
Figure 5.45: Spatial variation in frequency of landfall survey area site usage by dunlin during baseline surveys
Figure 5.46: Annual variation in average counts of redshank190
Figure 5.47: Spatial variation in frequency of landfall survey area site usage by redshank during baseline surveys
Figure 5.48: Annual variation in average counts of greenshank
Figure 5.49: Spatial variation in frequency of landfall survey area site usage by greenshank during baseline surveys
Figure 5.50: Annual variation in average counts of black-headed gull196
Figure 5.51 Spatial variation in frequency of landfall survey area site usage by black-headed gull during baseline surveys
Figure 5.52 Annual variation in average counts of Mediterranean gull 199
Figure 5.53 Spatial variation in frequency of landfall survey area site usage by Mediterranean gull during baseline surveys
Figure 5.54 Annual variation in average counts of common gull202
Figure 5.55 Spatial variation in frequency of landfall survey area site usage by common gull during baseline surveys
Figure 5.56 Annual variation in average counts of great black-backed gull
Figure 5.57 Spatial variation in frequency of landfall survey area site usage by great black-backed gull during baseline surveys206
Figure 5.58: Annual variation in average counts of herring gull208
Figure 5.59: Spatial variation in frequency of landfall survey area site usage by herring gull during baseline surveys
Figure 5.60 Annual variation in average counts of lesser black-backed gull
Figure 5.61: Spatial variation in frequency of landfall survey area site usage by lesser black-backed gull during baseline surveys
Figure 5.62: Annual variation in average counts of Sandwich tern (shading represents +/- one standard error)
Figure 5.63 Variation in average counts of Sandwich tern during roosting tern surveys

by black guillemot during baseline surveys......222

1. Introduction

Codling Wind Park Ltd. ('the Applicant') is proposing to develop the Codling Wind Park (CWP) Offshore Wind Farm (OWF) (the Project). The Project would comprise up to 75 turbines, three offshore substation structures, inter-array cables, interconnector cables and offshore export and onshore export cables taking power to an onshore substation. The array site would be located approximately 13 km at its nearest point from the County Wicklow coast, Ireland, and cover an area of approximately 125 km² (Figure 1.1) The proposed landfall location of the Project export cable route would be at Poolbeg, South Dublin Bay (Figure 1.3).

Figure 1.1: Project location

The aim of this report is to present and describe the ornithological interests within each of the following areas, their immediate surroundings and the wider region:

- The Project array area (hereafter referred to as the 'array site');
- The Project export cable route offshore corridor area (hereafter referred to as the 'Offshore Export Cable Corridor – OECC'; and
- The Project export cable route intertidal landfall area (hereafter referred to as the 'OECC intertidal landfall').

These findings are used to determine those ornithology receptors within offshore and intertidal areas that characterise the baseline environment and are of relevance to the assessment of potential impacts from the Project within **Chapter 10: Ornithology**.

Those ornithological receptors within the array site and OECC consist primarily of species that are collectively called seabirds. Those ornithological receptors within the OECC intertidal landfall area consist primarily of species that are collectively called wildfowl and waders, however also within this area occur notable populations of breeding and staging migratory seabirds.

Baseline characterisation for the array site relates to contemporary records derived from 24 Digital Aerial Surveys (DAS), undertaken approximately monthly between May 2020 and April 2022 and 15 boat-based European Seabirds At Sea (ESAS) surveys undertaken between October 2018 and August 2020. These baseline characterisation surveys were used to describe the following;

- Bird abundance and density estimates (monthly and for bio-seasons);
- Behaviour of birds (numbers flying and sitting on the water); and
- Flight height distributions of key seabird species (from boat-based ESAS surveys).

Baseline characterisation data from these contemporary surveys are contextualised by reference to additional information from relevant desk-based studies of the array site and OECC and their immediate surrounding areas and wider region.

Baseline characterisation for the OECC intertidal landfall area relates to contemporary records from 81 intertidal diurnal landfall surveys undertaken approximately twice per month between October 2019 and March 2023 (excluding April and first half of May 2020, on account of restrictions related to the Covid 19 pandemic). These surveys were used to determine the following:

- Species abundances and distributions during daylight periods;
- Behaviour of birds (foraging or roosting/loafing) during daylight periods; and
- Background levels of anthropogenic and natural disturbance during daylight periods.

Additionally, 4 intertidal crepuscular dusk surveys were undertaken each year during the period between mid-July and mid-September in 2020 and 2021. These surveys specifically inform about:

• Post breeding tern roosting abundances and distributions.

Baseline characterisation from these contemporary surveys are contextualised by reference to additional information from relevant desk-based studies of the OECC intertidal landfall area and its immediate surrounding areas and wider region.

304,000

324,000

1.1. Study area

Contemporary DAS and boat-based ESAS surveys for offshore ornithological receptors were undertaken within the array site and surrounding 4 km buffer (Figure 1.2). Both survey methodologies utilised the same 16 east-west orientated transects for data collection.

Contemporary surveys for intertidal ornithological receptors were undertaken within the OECC intertidal landfall area and a wider area within South Dublin Bay between the Great South Wall of Dublin Port and the north-west wall of Dun Laoghaire Harbour (Figure 1.3).

294,000

314,000

334,000

286,800

289,000

291,200

2. Offshore ornithology

This section describes the data sources and approach to baseline characterisation of offshore ornithological receptors.

2.1. Summary of data sources

Summary information relating to contemporary site-specific surveys to characterise use of the array site by offshore ornithological receptors is provided in Table 2.1, along with equivalent information for historic site-specific surveys relating to the array site and other appropriate contextual literature and data sources identified.

Table 2.1 Data sources for offshore ornithology baseline characterisation for the Project

Source	Date	Summary	Coverage of study area	
Contemporary site-speci	Contemporary site-specific baseline characterisation surveys			
DAS data	2020 - 2022	Twenty-four digital aerial surveys conducted, approximately monthly, by HiDef Ltd. between May 2020 and April 2022.	Array site plus a 4 km buffer. Same survey transect lines as ESAS surveys undertaken 2018-2020.	
ESAS survey data	2018 - 2020	Fifteen boat-based surveys conducted by Natural Power between October 2018 and August 2020.	Array site plus a 4 km buffer. Same survey transect lines as DAS undertaken 2020-2022.	
Historic site-specific bas	eline characterisation surv	eys		
ESAS survey data	2013 - 2014	Twelve boat-based surveys conducted by Natural Power between April 2013 and April 2014.	Array site plus a 4 km buffer and additionally northern and southern reference areas. Transects within the array site and 4 km buffer are the same as those used for contemporary DAS and ESAS surveys.	
Additional data sources				
Jessopp <i>et al.</i> (2018)	2016 - 2017	Project carried out as part of the ObSERVE programme, comprising aerial surveys of 55 transects within the western Irish Sea carried out in summer and autumn 2016 and winter 2016/2017.	Survey area covered by ObSERVE encompassed western Irish Sea at a regional scale and was inclusive of array site plus 4 km buffer and OECC. No finer resolution available.	
Camphuysen <i>et al.</i> , 2004	1983, 1991, 1993 and 1995	Observations collected through aerial visual and boat-based surveys recorded in the ESAS database.	Raw counts of records within array site plus 4 km buffer and OECC.	

2.2. Historic site-specific baseline characterisation surveys

Twelve boat-based ESAS surveys were undertaken between April 2013 and April 2014. These covered an area which included the array site, a 4 km buffer and additional reference areas to the north and south (Figure 2.1).

provides a summary of the total number of each species recorded in each area during all surveys within this period and a break-down of records of each species in each area per survey is provided in Table 2.22.

.

314,000

334,000

Table 2.2: Summed totals of each species recorded during boat-based ESAS surveys undertaken between April 2013 and April 2014

Species / Species group	array site	4 km buffer area	Northern and southern reference areas
Arctic or common tern	0	28	17
Arctic skua	4	2	3
Arctic tern	9	22	35
Arctic, common or roseate tern	0	20	40
Black guillemot	28	37	1
Black-headed gull	6	6	7
Common gull	12	35	10
Common scoter	2	2	1
Common tern	33	30	17
Cormorant	6	10	0
Cormorant or shag	1	0	0
Fulmar	15	38	21
Gannet	50	95	49
Great black-backed gull	24	107	14
Great northern diver	2	2	1
Great skua	0	0	3
Guillemot	1362	3221	2951
Guillemot or razorbill	34	246	308
Herring gull	17	100	18
Herring or lesser black-backed gull	3	2	0
Kittiwake	757	1392	499
Lesser black-backed gull	4	19	6
Little gull	21	31	5
Manx shearwater	548	1986	1005
Puffin	4	16	13
Razorbill	621	2298	1284
Red-throated diver	10	30	1
Roseate tern	0	15	5
Sabine's gull	0	1	0
Sandwich tern	0	2	0
Shag	50	115	7
Storm petrel	4	22	3
Unidentified gull species	1	0	0
Unidentified large gull species	0	8	0

Source: Natural Power

2.3. Existing data sources

Offshore ornithological data have been collected for multiple purposes within the western Irish Sea that provide regional and national generic and species-specific information on the distribution, abundance, biological seasons, behaviour and characteristics of birds in the offshore environment. These data sources were considered to characterise the wider region and for the purpose of impact assessments.

2.3.1. ObSERVE data

Ornithological data obtained during the ObSERVE survey programme (Jessopp *et al.* 2018) were collected via a suite of low-level aerial transect surveys carried out during summer, autumn and winter 2016. The survey area covered the entire western Irish Sea (from Dundalk in the north, to south of Wexford Harbour in the south), and was inclusive of the array site and OECC.

A total of fifty-five east-west orientated survey transects were spaced at 2 nm (3.7 km) apart and observers recorded all seabirds within a 200 m fixed strip-width from either side of the aircraft. Full details on the survey methodology are available in Jessopp *et al.* 2018.

Table 2.3 gives a summary of the species recorded in the full survey area during summer, autumn and winter 2016, while Table 2.4 summarises estimated total abundances for each season within the western Irish Sea area covered. These results provide regional information on species present within the western Irish Sea and are considered indicative of those species likely to be present within the vicinity of the array site and OECC during the breeding and non-breeding seasons.

Some individuals were not identified to species level and were instead assigned to species categories (e.g. 'guillemot/razorbill' or 'small gull sp.').

Species	Summer		Autumn		Winter	
Species	Sightings	Individuals	Sightings	Individuals	Sightings	Individuals
Auk sp.	20	135	2	31	0	0
Black guillemot	5	6	2	3	0	0
Black-backed gull sp.	55	77	42	88	72	171
Black-headed gull	6	17	12	67	79	214
Common or Arctic tern	299	498	144	737	0	0
Common scoter	0	0	31	855	41	328
Cormorant or Shag	53	255	50	182	71	106
Diver sp.	4	4	115	879	170	252
Fulmar	41	59	571	1337	75	137
Gannet	194	331	445	828	27	33
Great black-backed gull	0	0	74	95	34	48
Great skua	0	0	3	4	1	1
Guillemot or Razorbill	100	3849	3496	16444	2245	4470
Herring or Common gull	207	568	145	890	412	1268
Kittiwake	309	499	326	1355	310	567
Large gull sp.	9	43	41	724	62	579
Lesser black-backed gull	0	0	25	31	8	8
Little gull	0	0	0	0	37	80
Little tern	52	72	23	65	0	0
Manx shearwater	790	3669	80	1062	2	5
Petrel sp.	1	1	7	9	0	0
Puffin	23	26	1	1	0	0

 Table 2.3: Summed totals of species recorded during low level aerial surveys of the western Irish Sea during summer and autumn 2016 and winter 2016/17 (Jessopp et al. 2018)

Spacios	Summer		Autumn		Winter	
opecies	Sightings	Individuals	Sightings	Individuals	Sightings	Individuals
Roseate tern	66	131	13	34	0	0
Sandwich tern	39	60	21	30	0	0
Scoter sp.	0	0	6	45	4	11
Shearwater sp.	3	7	0	0	2	4
Small gull sp.	38	63	31	763	97	144
Tern sp.	7	8	1	4	0	0
Velvet scoter	0	0	6	9	9	30

Source: ObSERVE

 Table 2.4: Estimated total abundances of each species within the western Irish Sea area covered by ObSERVE surveys during summer and autumn 2016 and winter 2016/17 (Jessopp et al. 2018)

Species	Total abundance (95% confidence intervals)		
	Summer	Autumn	Winter
Auk sp.	1360 (801-2310)	311 (109-889)	0
Black guillemot	52 (29-93)	60 (23-156)	0
Black-backed gull sp.	895 (680-1177)	1019 (700-1485)	1580 (1135-2200)
Black-headed gull	266 (120-593)	1332 (591-3002)	1804 (1287-2529)
Common or Arctic tern	4514 (3883-5247)	7268 (5178-10202)	0
Common scoter	0	8616 (4200-17677)	3089 (1962-4863)
Cormorant or Shag	2805 (1730-4546)	2796 (1422-5495)	1321 (N/A)
Diver sp.	47 (23-95)	8916 (5049-15745)	2942 (2440-3548)
Fulmar	628 (425-929)	13892 (11314-17057)	1453 (908-2326)
Gannet	3228 (2425-4296)	8059 (6396-10154)	315 (226-438)
Great black-backed gull	N/A	2243 (1081-4650)	498 (361-688)
Great skua	0	40 (19-83)	10 (3-29)
Guillemot or Razorbill	36255 (32869-39990)	159503 (143540-177241)	42296 (37122-48190)
Herring or Common gull	6916 (5303-9019)	35015 (14829-82680)	16110 (11489-22590)
Kittiwake	5255 (4307-6410)	13501 (9659-18871)	5255 (4104-6728)
Large gull sp.	511 (215-1217)	12926 (8111-20599)	6841 (4564-1025)
Lesser black-backed gull	N/A	316 (228-440)	75 (48-118)
Little gull	0	0	1539 (822-2880)
Little tern	652 (470-905)	642 (386-1065)	0
Manx shearwater	30928 (26815-35671)	10566 (5462-20441)	114 (47-278)
Petrel sp.	6 (2-19)	71 (41-121)	0
Puffin	229 (169-309)	6 (2-18)	0
Roseate tern	1260 (724-2190)	347 (198-608)	0
Sandwich tern	642 (450-917)	331 (230-476)	0
Scoter sp.	0	426 (233-780)	110 (46-259)
Shearwater sp.	70 (30-164)	0	40 (16-99)
Small gull sp.	747 (514-1086)	10789 (4625-25163)	1524 (1039-2236)
Tern sp.	61 (37-102)	31 (11-91)	0
Velvet scoter	0	101 (58-177)	265 (109-640)

Source: ObSERVE

2.3.2. ESAS Database

The ESAS database (Camphuysen *et al.*, 2004) consists of observations collected through aerial visual and boatbased surveys between 1979 and 1996. Table 2.5 shows the combined raw count of birds recorded in the ESAS database within the array site plus 4 km buffer. Note that this total number is compiled from numerous different surveys carried out across several years, and in various months. The data shown in the table below were collected in the years 1983, 1991, 1993 and 1995. It is therefore recognised that these data are by no means contemporary, but contextually useful nonetheless in terms of showing the relative abundances of common species.

Species	Number of birds (array site)	Number of birds (4 km buffer)	Total number of birds (array site + 4 km buffer)
Arctic tern	0	2	2
Common or Arctic tern	3	0	3
Common tern	0	1	1
Fulmar	0	5	5
Gannet	2	0	2
Guillemot	3	80	83
Guillemot or Razorbill	0	2	2
Kittiwake	4	246	250
Lesser black-backed gull	0	2	2
Manx shearwater	8	51	59
Puffin	0	1	1
Razorbill	0	36	36

Table 2.5: Total number of birds of each species recorded by ESAS surveys in the array site plus 4 km buffer

Source: ESAS database

2.4. Contemporary site-specific baseline characterisation surveys

2.4.1. Digital Aerial Surveys (DAS)

Twenty-four digital aerial surveys of the array site, plus a 4 km buffer were undertaken approximately monthly between May 2020 and April 2022 inclusive, by HiDef. Analysis of the imagery collected was also undertaken by HiDef. Survey dates, start and finish times and conditions are provided in Table 2.6.

Survey no.	Survey date	Survey flight times	Survey conditions
1	29/05/2020	06:47 - 08:29	Windspeed: 10kts; Cloud base: 2000ft
2	21/06/2020	06:40 - 08:15	Windspeed: 30kts; Cloud base: 2300ft; Other: Strong crosswind conditions persisted for the whole survey
3	10/07/2020	06:35 - 08:09	Windspeed: 20-25kts; Cloud base: 2000+ft
4	03/08/2020	05:51 - 07:30	Windspeed: 10kts; Cloud base: 2000ft+
5	18/09/2020	08:11 - 09:50	Windspeed: 10-20kts; Cloud base: N/A
6	15/10/2020	09:55 - 11:32	Windspeed: 10-20kts; Cloud base: N/A
7	13/11/2020	10:10 - 11:53	Windspeed: 10-20kts; Cloud base: N/A
8	20/12/2020	10:45 - 12:20	Windspeed: 10-20kts; Cloud base: N/A
9	15/02/2021	12:46 - 14:25	Windspeed: 15kts; Cloud base: N/A
10	06/03/2021	11:07 - 12:42	Windspeed: 0kts; Cloud base: N/A
11	17/03/2021	09:26 - 11:15	Windspeed: 28kts at height; Cloud base: 2000ft+

Table 2.6: Dates, times and survey conditions for contemporary DAS of the array site plus 4 km buffer

Survey no.	Survey date	Survey flight times	Survey conditions
12	19/04/2021	08:29 - 10:07	Windspeed: 5kts; Cloud base: N/A
13	06/05/2021	08:07 - 09:53	Windspeed: 15 - 25kts; Cloud base: 1800ft+
14	07/06/2021	12:16 - 15:39	Windspeed: 20kts; Cloud base: 8000+ft
15	23/07/2021	15:09 - 16:49	Windspeed: 15-25kts; Cloud base: 2000+ft
16	02/08/2021	15:13 - 16:49	Windspeed: 5-10kts; Cloud base: 2000+ft
17	11/09/2021	07:29 - 09:12	Windspeed: 5-10kts; Cloud base: 20222+ft
18	23/10/2021	09:11 - 10:51	Windspeed: 10kts; Cloud base: 1800+ft
19	10/11/2021	10:03 - 11:32	Windspeed: 5kts; Cloud base: 1800+ft
20	02/12/2021	12:19 - 13:59	Windspeed: 15kts; Cloud base: 1800+ft
21	13/01/2022	10:18 - 11:49	Windspeed: 5-15kts; Cloud base: 1700ft
22	11/02/2022	09:29 - 10:56	Windspeed: 5-20kts; Cloud base: 2000+ft
23	12/03/2022	08:51 - 10:35	Windspeed: 10kts; Cloud base: N/A
24	12/04/2022	08:44 - 10:16	Windspeed: 5-10kts; Cloud base: N/A

Source: Natural Power

2.4.1.1. Survey design

DAS surveys followed the same transects as utilised for the boat-based survey campaign (See Figure 1.2; Section 1.1 Study area). Surveys followed a total of sixteen east-west orientated transects spaced at 1.5 km apart and covered the array site plus a 4 km buffer. Video imagery was captured from aircraft travelling at an average altitude of 1,800 feet and an average speed of 120 kn.

Images were captured at a Ground Sampling Density (GSD) of 2 cm and the total percentage of site coverage was 16.69% (greater than the current industry threshold standard of 12.5%).

2.4.1.2. Image analysis and species identification

Raw video data were converted into a format for further analysis using digital data review stations. Survey images were viewed by HiDef contracted reviewers using high resolution viewing screens and an image management software package that allows the reviewer to adjust and control the appearance of the images to allow identification to a higher level.

Images marked as requiring further analysis were passed on to marine ornithologists who identified birds down to species level where possible, and also recorded any other information available (behaviour, flight or swimming direction, sex, age).

Parameters recorded include:

- Date and time of observation;
- Location (latitude and longitude) (and accuracy);
- Real number (proxy for transect number);
- Species group (e.g. tern species, large auk species);
- Confidence in species group identification (possible, probable and definite);
- BTO code;
- Behaviour and direction of travel (e.g., flying NW, sitting, loafing (on land) and if possible, feeding behaviour, fish-carrying behaviour);
- Age class;
- Sex;
- · Additional information, including feeding behaviour where visible and association with vessels; and

 Information on the environmental conditions for every minute of footage, recording sea-state, sun glare, water turbidity and visibility.

The presence of other anthropogenic features which might influence the behaviour of birds was also recorded and assessed in the image analysis.

A randomly selected sample of at least 20% of material was identified independently by a separate group of ornithologists and requiring a no more than 10% disagreement with the first identification. In the case of any significant discrepancies (i.e., more than 10%), images were re-reviewed by a third ornithologist, acting as an adjustor.

2.4.1.3. Apportioning of species identified to higher taxonomic level

For records that were not identified to species level (e.g., Arctic tern/common tern), ratios of records that were identified to species level (in this example, those identified as either Arctic tern or common tern) were used to adjust density estimates to account for these records. For each grouping, ratios were calculated separately for each year, broadly defined season (breeding: April to August, non-breeding: September to March) and behaviour (in flight and on sea), but not for area. This allowed differences in ratios among seasons and behaviours to be captured. The calculations were carried out hierarchically so that smaller groupings were assigned first and then used to calculate the ratios for the larger groups. For example, observations of Arctic tern/common tern were divided according to the ratio of Arctic tern and common tern records and added to the numbers of Arctic tern and common tern to give adjusted numbers which were then used alongside the observations of roseate terns to calculate the ratios for the Arctic/common/roseate tern species grouping. This methodology assumes that all species within groupings are equally likely to be assigned to an unidentified species group and that the ratio of different species within groupings did not vary within season/behaviour combinations. The apportionment proportions used to assign records not identified to species level shown in Table A.1, Appendix A, at the end of this document.

2.4.1.4. Abundance and density estimation

The abundance and density of each species observed is estimated separately using a design-based strip transect analysis. In strip transect analysis each transect is treated as an independent analysis unit and the assumption is made that transects can be treated as statistically independent random sample from the site. The length of each transect and its breadth (i.e. the fieldview of the camera) multiplied together give the area of the transect, dividing the number of observations on the transect by the transect area gives a point estimate of the density of that species. The density of animals at the site, the standard deviation, 95% confidence intervals and coefficient of variance are then estimated using a non-parametric bootstrap method with replacement (Buckland *et al.*, 2001). The bootstrapping technique uses total length of transect to limit their selection rather than total number of transects.

The density estimate is expressed as the average number of animals per square kilometre surveyed over the whole site, and the abundance estimate is simply the average density multiplied up to the area of the whole site. The standard deviation is a measure of the variance of the population estimate, standardised by the number of samples (transects). The upper and lower confidence intervals define the range that the population estimate falls within with 95% certainty.

2.4.1.5. Correction for availability bias

For species that make foraging dives underwater such as divers and auks, a proportion of birds present within the study area will not be detectable at the surface during the analysis of the survey images. Density and abundance estimates need to be adjusted to allow for this 'availability bias'.

A fixed species-specific correction factor was applied to the number of each auk and diver species recorded on the sea surface. The correction factors for auks are derived from time spent under water (during the chick-rearing stage) from Thaxter *et al.* (2010) for guillemots and razorbills and from records from data loggers from Spencer (2012) for

puffins. A species-specific correction factor for black guillemots is currently unavailable and therefore this species has not been adjusted. The correction factors used to multiply the relative abundance estimate of guillemots, razorbills and puffins sitting on the sea surface are 1.311, 1.211 and 1.165, respectively.

No species-specific correction factor is currently available for red-throated diver. However, a correction factor of 1.3 is applicable to the great northern diver (Winiarski *et al.*, 2014) and as such the value applied to this species is herein used as a proxy. Abundance and density estimates in Section 5.1 Offshore ornithology are the corrected monthly abundance and density estimates, having been subjected to this process.

2.4.2. Boat-based ESAS surveys

Fifteen boat-based ESAS surveys of the array site plus a 4 km buffer were undertaken by Natural Power, between October 2018 and August 2020, inclusive. Survey dates, start and finish times and conditions are provided in Table 2.7 below.

Survey no.	Survey date	Survey flight times	Survey conditions
1	24/10/2018	07:00-17:45	F3-4, NW, dry
I	25/10/2018	08:57-18:02	F3-4, NW, dry
2	03/01/2019	08:30-16:35	F3-4, S, overcast, drizzle at times
2	04/01/2019	08:35-14:00	F1-2, S, overcast, dry
2	26/02/2019	08:30-17:09	F2-3, S, overcast, dry
3	27/02/2019	07:25-12:45	F2-3, SW, overcast, dry
4	25/03/2019	09:10-17:31	F3, NE, overcast, dry
4	26/03/2019	08:15-13:20	F3, NW, dry
Б	18/04/2019	09:00-17:01	F2-3, E, dry
5	19/04/2019	07:27-16:04	F2-3, E, dry
6	21/05/2019	08:52-17:03	F1-2, SE, dry
0	22/05/2019	07:21-13:20	F2, NW, dry
7	27/06/2019	08:33-17:34	F3, NE, dry
1	28/06/2019	08:45-17:01	F1, SE, dry
	01/08/2019	07:49-16:05	F1, ENE, overcast, dry

Table 2.7: Dates, times and survey conditions for contemporary boat-based ESAS surveys of the array site plus4 km buffer

Б	18/04/2019	09:00-17:01	F2-3, E, dry
5	19/04/2019	07:27-16:04	F2-3, E, dry
6	21/05/2019	08:52-17:03	F1-2, SE, dry
0	22/05/2019	07:21-13:20	F2, NW, dry
7	27/06/2019	08:33-17:34	F3, NE, dry
1	28/06/2019	08:45-17:01	F1, SE, dry
Q	01/08/2019	07:49-16:05	F1, ENE, overcast, dry
0	02/08/2019	07:20-12:46	F3, NE, dry
0	07/09/2019	10:04-16:39	F3, NW, dry
9	08/09/2019	07:30-14:17	F1, SW, overcast, dry
10	18/09/2019	08:54-17:18	F2, SE, dry
10	19/09/2019	08:18-13:17	F1, SE, dry
11	21/10/2019	10:37-18:12	F4, NNW, dry
11	22/10/2019	09:17-17:02	F2, SSW, overcast, dry
10	02/12/2019	08:10-16:21	F3, NW, overcast, dry
12	03/12/2019	08:04-13:00	F3, SSW, dry
12	18/01/2020	08:15-15:07	F2, S, dry
15	19/01/2020	08:10-14:30	F1, W, dry
1/	15/07/2020	07:40-15:54	F1, SW, overcast, dry
14	16/07/2020	06:59-15:31	F1-2, W, overcast, dry
15	17/08/2020	08:23-16:37	F1, Variable, overcast, rain
15	18/08/2020	06:38-11:47	F2, SW, overcast, rain

2.4.2.1. Survey design

Boat-based surveys utilised the same 16 east-west orientated transects as the DAS, covering the array site, plus a 4 km buffer (see Figure 1.2; Section 1.1 Study area). The full length of the 16 transect lines was followed on each survey, with the start and end point varied between surveys to ensure coverage of different parts of the site at different times of day. Whilst following transects, surveyors recorded all birds encountered onto survey forms.

The following methods were adapted in early 2020 in order to minimise the risk of Covid-19 transmission between survey personnel and crew. Two surveyors were used during each survey: one to act as observer and a second to act as a scribe, each alternating roles between transects so as to prevent fatigue and maintain high levels of visual acuity. Both surveyors maintained separation distances of over two metres wherever practicable. All surveyors were highly experienced in survey recording methods and bird identification, including familiarity with all relevant common and scarce marine species, some knowledge of rarities and a full understanding of plumages and moults.

Key components of the ESAS methods utilised are as follows:

- Bird detection was undertaken by naked eye, but binoculars were used to confirm identity and to occasionally look ahead for easily flushed species, such as divers and sea ducks;
- The survey is based on a line transect method with a strip width of 300 m; surveys monitored each transect on one side of the survey vessel using a 90° viewing angle;
- The 300 m transect is sub-divided into the following five bands into which all birds on the water are allocated: 0-50 m (band A), 50-100 m (B), 100-200 m (C), 200-300 m (D), 300+ m (E). Distances are perpendicular to the survey vessel. Only birds within 300 m (bands A-D) are considered to be 'in transect';
- For each observation, time was recorded to the nearest minute. At a speed of 10 knots, this allows the position of birds to be determined to the nearest 300 m. The time piece used for recording sightings was matched to a hand-held GPS used for recording survey tracks;
- All birds in flight were recorded, but only those 'in snapshot' were considered to be 'in transect'. Snapshots were
 made every 300 m of distance travelled (estimated based on time and adjusted to take into account the speed
 of the vessel, where 60 seconds approximately equals 300 m distance covered at a speed of 10 knots). A timed
 repeat alarm marked the location of snapshots and was adjusted to the speed of the survey vessel. At the time
 of each snapshot, all birds in flight within a 300 x 300 m 'box' extending 300 m to the front and 300 m
 perpendicular to the survey vessel were noted as being 'in transect';
- Birds in flight had their heights estimated at the time of first observation. DCCAE guidance (2018) recommends
 that flight heights should be recorded as accurately as possible rather than as a generic height band, in order to
 ensure the data can be used for CRM should the turbine dimensions change. However, flight heights of birds
 over the sea are often difficult to gauge and this can lead to false accuracy if this approach is used. The following
 approach to height recording was undertaken for 2018 to 2020 boat-based surveys:
 - to the nearest metre for birds below 5 m in height;
 - to the nearest five metres for birds 5 50 m in height;
 - to the nearest 10 m for birds 50 100 m in height; and
 - to the nearest 20 m for birds more than 100 m in height.

For each observation made during each of the boat-based surveys, the following information was also recorded where possible:

- Species (using BTO two letter codes);
- Number (count);
- Distance from vessel (see above);
- Height of flight (see above);
- Direction (where applicable); and

• Additional information regarding, age, sex, plumage and behaviour wherever possible.

Surveys were only undertaken when suitable conditions were forecast for recording seabirds; i.e. sea state 4 or less, and with good visibility (minimum of 300 m).

A number of environmental variables affecting visibility, and thus survey efficiency (e.g. rain, glare, wind speed and sea state), was also recorded. These abiotic factors were recorded at the start of each transect and when any changes to them are noted, as per MacLean *et al.* (2009).

2.4.2.2. Abundance and density estimation

Densities and abundances of seabird species were calculated for the array site (specifically flight densities, to inform DAS data in relation to birds at risk of collision), the array site plus a 2 km buffer (to inform DAS data in relation to birds at risk of displacement for the majority of potentially sensitive species) and the array site plus a 4 km buffer (to inform DAS data in relation to birds at risk of displacement for the most sensitive species) and the array site plus a 4 km buffer (to inform DAS data in relation to birds at risk of displacement for the most sensitive species – i.e. divers). Densities of seabirds were calculated by multiplying the number of observations of each species during boat-based transect surveys by the average cluster size for that species (calculated based all records recorded in the survey area within transect and calculated separately for in flight and on sea) and dividing by the area surveyed ("Survey effort") within the relevant region. Survey effort was calculated by multiplying the length of the indicative transects falling within the relevant region by a 300 m strip width. Abundances were calculated by multiplying densities by the total area of the corresponding region. Indicative survey effort and the total area of each region is presented in Table 2.8.

Table 2.8: Survey effort per survey for all sites

Area	Survey effort within area (km ²)	Area of polygon (km²)
array site	23.97	125.12
array site plus 2 km buffer	47.27	229.58
array site plus 4 km buffer	71.66	358.56
4 km buffer only	47.69	233.44

Source: Natural Power

2.4.2.2.1. Species assignment - accounting for records not identified to species level

The methodology used to apportion individuals not identified to species level is the same as that used for the apportionment of unidentified individuals during the analysis of DAS imagery (See Section 2.4.1.3 Apportioning of species assigned to higher taxonomic level, above). The apportionment proportions used to assign records not identified to species level are presented in Table A.2, Appendix A.

2.4.2.2.2. Distance sampling

Where possible, the density of birds recorded on the sea surface was calculated using 'design-based' Distance analysis. Distance analysis is used to correct the numbers of birds observed for imperfect detectability. Distance sampling operates on the principal that randomly distributed targets (e.g. birds) become more difficult to detect with increasing distance from the observer (Buckland *et al.* 2001). As a result, an increasing proportion of targets that are present will go undetected with increasing distance from the observer. In order to account for this decline in detectability, a detection function is fitted to the data. This function allows the estimation of the proportion of individuals within the surveyed area that remain undetected. These 'undetected' individuals are then incorporated into the density calculation for each species.

At least 60-80 observations are required for Distance analysis to ensure that a reliable detection function can be fitted (Buckland *et al.* 2001). Species with sufficient observations to allow for Distance analysis to be undertaken were guillemot (n = 2,940), razorbill (n = 1,060), kittiwake (n = 446), Manx shearwater (n = 102), herring gull (n = 1,060), kittiwake (n = 446).
66), gannet (n = 65) and red-throated diver (n = 64). A half-normal cosine detection function was fitted to guillemot and kittiwake and a hazard rate cosine detection function was for fitted to razorbill and red-throated diver. Distance analysis indicated that there was no drop-off in detectability within 300 m for gannet, herring gull and Manx shearwater. Analysis was undertaken using Distance Version 7.3 (Thomas *et al.* 2010).

Birds recorded in distance band E (> 300 m from the survey vessel) were excluded from the analysis, because the average distance of counts within an unbounded category cannot be calculated. This truncation is routinely utilised for accurate density estimation using the Distance sampling technique.

For each species, a global detection function was fitted, based on all data combined across surveys and regions. The function used to model the decrease in detectability with distance was selected by minimising Akaike's Information Criterion (AIC). This metric assesses the suitability of a model based on a trade-off between the goodness-of-fit of the model to the data and the complexity of the model. Estimates of species density were then calculated per visit for each of the three 'zones' (i.e. the site, the site plus a 2 km buffer and the 4 km buffer of the site), using the global detection function to incorporate undetected individuals. Cluster size was also incorporated at a global level whilst encounter rate was incorporated at the stratum level (i.e. separately for each survey and zone).

For species with fewer than 60 observations, Distance analysis was not undertaken and so density was calculated as for birds in flight (see Section 2.4.2.2). These densities are minimum estimates only since drop-off in detectability with increasing distance from the observer has not been accounted for.

2.4.3. Consideration of biological seasons

Bird behaviour and abundance is recognised to differ across a calendar year dependent upon the species-specific biological seasons (hereafter referred to as 'bio-seasons'). Separate bio-seasons are recognised in this baseline characterisation report in order to describe differing regional seabird populations around the array site and OECC areas across each annual cycle. Species specific bio-season definitions are based on those from Furness (2015) where available (Table 2.9). Furness (2015) also provides UK regional non-breeding population estimates associated with these bio-seasons (Biologically Defined Minimum Population Scale [BDMPS] populations) and these values have been adapted as a basis to define regional populations for the purpose of impact assessment (as described in Section 2.5, below).

Bio-seasons are defined within this baseline technical report as: return migration, migration-free breeding, postbreeding, migration-free winter, breeding and non-breeding. These six bio-seasons can be applied to different periods within the annual cycle for most species, though not all six are applicable for all seabird species, with different combinations used depending on the biology and life history of a species:

- Return migration: when birds are migrating to breeding grounds;
- Migration-free breeding: when birds are attending colonies, nesting and provisioning young;
- Post-breeding migration: when birds are migrating to wintering areas or dispersing from colonies;
- Migration-free winter: when non-breeding birds are over-wintering in an area;
- Breeding: from modal arrival to the colony at the beginning of breeding to modal departure from the colony; and
- Non-breeding: from modal departure from the colony at the end of breeding to modal return to the colony the following year.

Table 2.9: B	lio-seasons u	used as	the basis	for the	detailed	species	accounts	presented	in Section	5, k	based on
	Furness (2	015), un	nless spec	ified ot	herwise						

Species	Return migration (RM)	Migration- free breeding season (MFBS)	Post- breeding migration (PBM)	Migration- free winter (MFW)	Breeding (B)	Non- breeding (NB)
Common scoter*1					May – Aug	Sep – Apr
Kittiwake	Jan – Apr	May – Jul	Aug – Dec			
Little gull*2	Mar – Apr	May – Sep	Oct – Dec	Jan – Feb		
Common gull*3	Jan – Apr	May – Jul	Aug – Dec			
Black-headed gull*3	Jan – Apr	May – Jul	Aug – Dec			
Great black-backed gull					Apr – Aug	Sep – Mar
Herring gull					Apr – Aug	Sep – Mar
Lesser black-backed gull	Mar – Apr	May – Jul	Aug – Oct	Nov – Feb		
Common tern*4 (adjusted)	Apr – May	Jun	Jul – Sep			
Arctic tern*4 (adjusted)	Apr – May	Jun	Jul – Sep			
Roseate tern*4 (adjusted)	Apr - May	Jun	Jul – Sep			
Little tern*4 (Adjusted)	Apr – May	Jun	Jul – Sep			
Sandwich tern	Mar – May	Jun	Jul – Sep			
Guillemot					Mar – Jul	Aug – Feb
Razorbill	Jan – Mar	Apr – Jul	Aug - Oct	Nov – Dec		
Puffin*5 (adjusted)	Mar – Apr	May – Jul	Aug	Sep – Feb		
Black guillemot					Apr - Aug	Sep - Mar
Red-throated diver	Feb – Apr	May – Aug	Sep – Nov	Dec – Jan		
Great northern diver	Mar – May		Sep – Nov	Dec – Feb		
Fulmar	Dec – Mar	Apr – Aug	Sep – Oct	Nov		
Manx shearwater	Mar – May	Jun – Jul	Aug – Oct	Nov – Feb		
Gannet	Dec – Mar	Apr – Aug	Sep – Nov			
Cormorant*6					Apr – Aug	Sep – Mar
Shag	Dec – Feb	Mar – Jul	Aug – Oct	Nov		

Table notes: *1 from Cramp & Simmons (1977); *2 from Robinson (2005); *3Common gull and black-headed gull are not included in Furness (2015) - based on kittiwake; *4 Tern species bioseasons adjusted from Furness (2015) to correspond with whole months and reflect that postbreeding aggregations in the region begin to be used from mid-July onwards; *5 Puffin bioseasons adjusted from Furness (2015) to correspond with whole months; *6 from Royal HaskoningDHV (2019).

2.5. Regional population estimates

To assess impacts to seabird receptors for impacts within each bio-season and annually it is necessary to define regional populations for each receptor for each relevant bio-season. In the absence of published bio-seasonal regional populations for ornithological seabird species occurring within Irish waters and, specifically the Irish Sea region surrounding the CWP development area, approaches from the UK were adapted to generate regional bio-seasonal populations for impact assessment.

Bio-seasonal regions are considered in two broad groups: Non-breeding season regions, where individuals from all demographic groups are considered not to act as central place foragers, with individuals dispersing widely through geographic regions, and breeding season regions, where breeding adults act as central place foragers within species-specific foraging ranges around nesting locations.

2.5.1. **Defining non-breeding season regional populations**

Within UK waters the general approach taken to define non-breeding season regional populations for OWF impact assessment is to refer to Biologically Defined Minimum Population Scale (BDMPS) populations referenced for species-specific areas around the UK coast, in Furness (2015). From this paper it was possible to select the most appropriate UK BDMPS region for each receptor (typically the BDMPS region which included coverage of the eastern side of the Irish Sea) and adapt its non-breeding season population(s) to include greater connectivity with seabird breeding populations within and around the Irish (west) side of the Irish Sea, so as to arrive at equivalent non-breeding season regional populations for use by projects on the west side of the Irish Sea.

The process by which UK BDMPS non-breeding regional populations were adapted is as follows:

- 1. The most appropriate UK BDMPS regional populations from Furness (2015) for each species were selected. These regions, and their estimated population sizes, are shown for each species in Table 2.10.
- 2. The Irish (ROI) component of Furness (2015), with limited connectivity to Irish breeding populations and based upon less recent Irish seabird breeding population estimates, was removed from each of the selected UK BDMPS regional populations. To remove the Irish (RoI) component of a UK BDMPS region population the total number of immatures and adults in that BDMPS region deriving from Irish source populations were calculated with reference to Tables in Appendix A of Furness (2015). The parameters used to calculate the total numbers of immatures and adults from the relevant BDMPS region for each species are presented in Table 2.11.

The Irish (RoI) component of the Furness (2015) BDMPS population was calculated as a sum of adult and immature birds where:

No. of adults = Irish pop (ad) * Proportion in BDMPS (Ad) No. of immatures = Irish pop (ad) * Proportion in BDMPS (Imm) * Imm:Ad

This treatment resulted in the removal of the number of individuals shown in Table 2.12 from each BDMPS bio-seasonal population.

3. An adapted Irish (ROI) BDMPS component was calculated based upon updated Irish (ROI) breeding seabird populations from Seabird Count data (Burnell et al., 2023), the proportions of those breeding birds at Irish east and south coast colonies (Burnell et al., 2023) and immature to adult ratios calculated using species-specific demographic parameters. These parameters are provided in Table 2.13, with separate derivation of immature to adult ratios presented in Table 2.14. Immature to adult ratios were calculated from stable age structure population compositions derived from demographic parameters presented in Horswill and Robinson, 2015. These ratios were used over those presented in Furness, 2015, on account that they are derived from more recently collected demographic data and this data has also been used to calculate average population mortality rates, which have been used in EIA assessment to contextualise impact magnitude assessments.

The adapted Irish (ROI) component was calculated as:

Adapted No of adults + immatures = [No of breeding adults + (No of breeding adults * proportion of imm)] * East & South coast proportion

A notable exception to this approach to calculating adapted BDMPS components relates to the estimation of red-throated and great northern diver populations. For diver species, which are not included in Cummins et al., 2019 (as largely or entirely absent as breeding species), estimations of the additional Western Irish Sea population were taken from Jessopp et al., 2018 (Table 2.15). As surveys undertaken in Jessopp et al., 2018 did not cover the Return Migration period of diver species (i.e. spring), it was assumed that abundances during the return migration period were the same as those calculated for the Post Breeding Migration period (i.e. autumn). These surveys were unable to differentiate between diver species, as such it was assumed that all divers recorded were either red-throated or great northern (as a third species, black

throated diver, is scarce in the region). Ratios of red throated to great northern diver for each season were calculated by comparison of bio-seasonal populations of each for appropriate relevant BDMPS regions.

The resultant adapted Irish (ROI) BDMPS components are shown in Table 2.16.

4. Adapted Irish (ROI) BDMPS components were added to the UK BDMPS populations from which the Irish component had been removed. Updated regional BDMPS non-breeding populations including an adapted Irish component are provided in Table 2.17.

For a number of species, which were not included in Furness, 2015, and for which UK BDMPS non-breeding population information is not available alternative approaches were followed to estimate regional non-breeding populations. These are:

- Little gull: Non-breeding season regional populations were considered to be the estimated winter abundance within the western Irish Sea region from Jessopp *et al.*, 2018; a total of 1,539 individuals. As the western Irish Sea represents only a fraction of the total Irish Sea area and wider western UK and Irish waters which may be utilised by the species during non-breeding periods, this regional population estimate is considered an underestimate.
- Common gull: Non-breeding season regional populations were taken as 'all Ireland' non-breeding population estimates from Appendix 4 of Stroud *et al.*, 2016; a total of 67,500 individuals.
- Black-headed gull: Non-breeding season regional populations were taken as 'all Ireland' non-breeding population estimates from Appendix 4 of Stroud *et al.*, 2016; a total of 100,000 individuals.
- Black guillemot: The regional non-breeding population for this typically relatively sedentary, non-migratory species were assumed to be the same as regional breeding population, where the regional breeding population was taken as the sum of all most recent colony counts from Dublin and Wicklow Counties from the Seabird Count dataset (389 breeding adults JNCC, 2023), plus an estimated number of immatures associated with this number of adults (654 immature birds, from immature to adult ratio of 1.681 Table 2.14); a total of 1,043 individuals.

Table 2.10: Non-breeding season BDMPS region selections and bio-seasonal populations

		BDMPS population (breeding adults and immatures)									
		Differentiated non-breeding sea	son		Non-differentiated non-						
					breeding season						
Species	BDMPS region(s)	Return migration (RM)	Post-breeding migration (PBM)	Migration-free winter (MFW)	(NB)						
Kittiwake	UK western waters plus Channel	691,526	911,586								
Great black-backed gull	UK South-west & Channel + UK West of Scotland				52,122						
Herring gull	UK Western waters				173,299						
Lesser black-backed gull	UK Western waters	163,304	163,304	41,159							
Common tern	UK Western waters	64,659	64,659								
Arctic tern	UK Western waters	71,398	71,398								
Roseate tern	West England & Wales	2,100	2,100								
Sandwich tern	UK Western waters	10,761	10,761								
Guillemot	UK Western waters				1,139,220						
Razorbill	UK Western waters	606,914	606,914	341,422							
Puffin	UK Western waters	304,557	304,557	304,557							
	UK western waters plus Channel	4,373	4,373								
Red-throated diver	NW England & Wales			1,657							
Great northern diver	NW England & Wales	300	300	300							
Fulmar	UK western waters plus Channel	828,194	828,194	556,367							
Manx shearwater	UK western waters plus Channel	1,580,895	1,580,895								

		BDMPS population (breeding adults and immatures)										
		Differentiated non-breeding seas	Differentiated non-breeding season									
				breeding season (not split into distinct periods)								
Species	BDMPS region(s)	Return migration (RM)	Post-breeding migration (PBM)	Migration-free winter (MFW)	(NB)							
Gannet	UK Western waters	661,888	545,954									
Cormorant	SW England and Wales				9602							

Table 2.11 Parameters used to calculate Irish component of BDMPS population in Furness (2015)

Species	BDMPS region(s)	Irish population (Adults)	Proportion of Irish population occurring within UK BDMPS region (Adults/Immatures)	Immature to adult ratio (Imm:Ad – from Furness, 2015)
Kittiwake	UK western waters plus Channel	40,000	(0.3/0.2)	0.88
	UK South-west & Channel +			
Great black-backed gull	UK West of Scotland	4000	(0.1/0.3)	1.26
Herring gull	UK Western waters	10000	(0.3/0.4)	1.09
			PBM & RM: (0.4/0.2), MFW:	
Lesser black-backed gull	UK Western waters	7600	(0.2/0.05)	0.68
Common tern	UK Western waters	5400	(0.4/0.4)	0.67
Arctic tern	UK Western waters	5000	(0.3/0.3)	0.58
Roseate tern	West England & Wales	1500	(0.95/0.6)	0.75
Sandwich tern	UK Western waters	3600	(0.3/0.3)	0.63
Guillemot	UK Western waters	NA	0	0.74
Razorbill	UK Western waters	34000	(0.1/0.1	0.75
Puffin	UK Western waters	40000	(0.1/0.1)	1.04
	UK western waters plus Channel	NA	0	0.74
Red-throated diver	NW England & Wales	NA	0	0.74

Species	BDMPS region(s)	Irish population (Adults)	Proportion of Irish population occurring within UK BDMPS region (Adults/Immatures)	Immature to adult ratio (Imm:Ad – from Furness, 2015)
Great northern diver	NW England & Wales	NA – No BDMPS pop source table pro	ovided in Furness, 2015	1.1
Fulmar	UK western waters plus Channel	NA	0	Fulmar
Manx shearwater	UK western waters plus Channel	NA – UK BDMPS pop only used in as	sessment	0.84
Gannet	UK Western waters	72000	PBM: (0.2/0.3), RM: (0.3/0.3)	0.81
Cormorant	SW England and Wales	8200	(0/0.02)	1.17
Shag	SW England and Wales	4000	(0/0.03)	1.31

 Table 2.12:
 Irish (Rol) component of BDMPS population (removed from Furness, 2015, BDMPS population)

		Irish component of UK BDMPS population (adults and immatures)						
Species	BDMPS region(s)	RM	РВМ	MFW	NB			
Kittiwake	UK western waters plus Channel	19,040	19,040					
	UK South-west & Channel + UK West				3 320			
Great black-backed gull	of Scotland				5,520			
Herring gull	UK Western waters				7,360			
Lesser black-backed gull	UK Western waters	4,074	4,074	1,778				
Common tern	UK Western waters	3,607	3,607					
Arctic tern	UK Western waters	2,370	2,370					
Roseate tern	West England & Wales	2,100	2,100					
Sandwich tern	UK Western waters	1,760	1,760					
Guillemot	UK Western waters				0			
Razorbill	UK Western waters	5950	5,950	5,950				
Puffin	UK Western waters	8,160	8,160	8,160				
	UK western waters plus Channel	0	0					
Red-throated diver	NW England & Wales			0				

		Irish component of UK BDMPS population (adults and immatures)						
Species	BDMPS region(s)	RM	PBM	MFW	NB			
Great northern diver	NW England & Wales	0	0	0				
Fulmar	UK western waters plus Channel	0	0	0				
Manx shearwater	UK western waters plus Channel	0	0					
Gannet	UK Western waters	39,096	31,896					
Cormorant	SW England and Wales				192			
Shag	SW England and Wales	157	157	157				

Table 2.13:	Parameters used	to calculate Irish	component of	adapted BDMPS	population
-------------	-----------------	--------------------	--------------	---------------	------------

Species	Irish (Rol) population (adults) (Burnell et al., 2023)	East and South coast ROI population (adults) (Colony totals from Seabird Count (Burnell et al., 2023) for County Louth to Mizen Head in County Cork)	Proportion of Rol population to be added to BDMPS population (Rol pop / E & S coast pop)	Immature to adult ratio (Horswill and Robinson, 2015)
Kittiwake	49,446	21,418	0.433	0.898
Great black-backed gull	5,650	1,814	0.321	1.538
Herring gull	19,404	8,926	0.460	1.370
Lesser black-backed gull	14,048	6,540	0.466	0.876
Common tern	9,456	7,612	0.805	0.701
Arctic tern	5,416	2,120	0.391	0.511
Roseate tern	3,748	3,748	1.000	0.701
Sandwich tern	4,928	3,598	0.730	0.538
Guillemot	178,090	100,941	0.567	0.916
Razorbill	32,904	16,785	0.510	0.876
Puffin	28,464	2,188	0.077	0.842
Red-throated diver	Jessopp et al., 2018, data used to de	termine additional Western Irish Sea po	pulations (see	
Great northern diver	-			

Species	Irish (Rol) population (adults) (Burnell et al., 2023)	East and South coast ROI population (adults) (Colony totals from Seabird Count (Burnell et al., 2023) for County Louth to Mizen Head in County Cork)	Proportion of Rol population to be added to BDMPS population (Rol pop / E & S coast pop)	Immature to adult ratio (Horswill and Robinson, 2015)
	Table 2.15)			
Fulmar	64,262	Fulmar	64,262	Fulmar
Manx shearwater	268,440	Manx shearwater	268,440	Manx shearwater
Gannet	96,064	11,996	0.125	0.761
Cormorant	8,248	3,672	0.445	1.451
Shag	9,496	2,340	0.246	0.792

Table 2.14 Demographic rates (from Horswill and Robinson, 2015) used to calculate stable age population age class proportions, immature to adult ratios and average mortality rates

Species	Parameter	Survival	urvival (Age class)									vity air)	dult atio age ality	
		0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	Adult	Producti (chicks per p	Immature to ac	Avera
Kittiwake	Demographic Rate	0.790	0.854	0.854	0.854						0.854	0.69	0.898	0.156
	Population Age Ratio	0.155	0.123	0.105	0.090						0.527			
Black-headed gull	Demographic Rate	0.825	0.825								0.825	0.625	0.471	0.175
	0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 Adult 5-6 Demographic Rate 0.790 0.854 0.854 0.854 0.854 0.8 0 0 0 0.854 0.854 0.854 0.8 0 0 0 0.854 0.854 0.854 0.8 0 0 0 0 0.854 0.854 0.854 0.8 0 0 0 0 0.854 0.854 0.854 0 0 0 0 0.854 0.8 0.8 0.8 0.8 0.8 0 0 0 0 0 0 0.8 <t< td=""><td></td><td></td><td></td></t<>													
Little gull	Demographic Rate	0.800	0.800								0.800	0.625	0.471	0.200
	Population Age Ratio	0.175	0.145								0.680			
Great black-backed gull	Demographic Rate	0.798	0.930	0.930	0.930	0.930					0.930	1.139	1.538	0.095

Species	Parameter	Surviva	l (Age clas	ss)								/ity air)	dult atio	age lity
		0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	Adult	Productiv (chicks per p	Immature to ac	Avera
	Population Age Ratio	0.188	0.134	0.112	0.094	0.078					0.394			
Common gull	Demographic Rate	0.410	0.710	0.828							0.828	0.543	0.452	0.253
	Population Age Ratio	0.172	0.078	0.061							0.689			
Herring gull	Demographic Rate	0.798	0.834	0.834	0.834	0.834					0.834	0.92	1.37	0.172
	Population Age Ratio	0.163	0.132	0.111	0.094	0.079					0.422			
Lesser black-backed gull	Demographic Rate	0.820	0.885	0.885	0.885	0.885					0.885	0.53	0.876	0.123
	Population Age Ratio	0.125	0.102	0.090	0.080	0.070					0.533			
Sandwich tern	Demographic Rate	0.358	0.741	0.741							0.898	0.702	0.538	0.238
	Population Age Ratio	0.212	0.078	0.060							0.650			
Roseate tern	Demographic Rate	0.664	0.664	0.850							0.883	0.764	0.701	0.191
	Population Age Ratio	0.197	0.130	0.086							0.588			
Common tern	Demographic Rate	0.664	0.664	0.850							0.883	0.764	0.701	0.191
	Population Age Ratio	0.197	0.130	0.086							0.588		1	
Arctic tern	Demographic Rate	0.664	0.837	0.837	0.837						0.837	0.38	0.511	0.183
	Population Age Ratio	0.114	0.082	0.074	0.068						0.662			
Guillemot	Demographic Rate	0.560	0.792	0.917	0.939	0.939	0.939				0.939	0.672	0.916	0.136
	Population Age Ratio	0.160	0.087	0.067	0.060	0.055	0.050				0.522			
Razorbill	Demographic Rate	0.794	0.794	0.895	0.895	0.895					0.895	0.57	0.876	0.129
	Population Age Ratio	0.135	0.107	0.084	0.075	0.066					0.533			
Black guillemot	Demographic Rate	0.731	0.870	0.870	0.870	0.870					0.870	1.298	1.681	0.158
	Population Age Ratio	0.200	0.139	0.115	0.095	0.078					0.373			

Species	Parameter	Surviva	Survival (Age class)							vity air)	dult atio	age Ility		
		0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	Adult	Producti (chicks per p	Immature to ac	Avera
Puffin	Demographic Rate	0.709	0.709	0.709	0.760	0.805					0.906	0.617	0.842	0.177
	Population Age Ratio	0.156	0.113	0.082	0.060	0.047					0.543			
Red-throated diver	Demographic Rate	0.600	0.620	0.840							0.840	0.571	0.534	0.224
	Population Age Ratio	0.168	0.108	0.072							0.652			
Great northern diver	Demographic Rate	0.770	0.770	0.770	0.870	0.870	0.870				0.870	0.543	0.947	0.161
	Population Age Ratio	0.126	0.101	0.081	0.065	0.059	0.053				0.514			
Fulmar	Demographic Rate	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.936	0.419	1.083	0.103
	Population Age Ratio	0.095	0.083	0.072	0.062	0.054	0.047	0.041	0.035	0.031	0.480			
Manx shearwater	Demographic Rate	0.870	0.870	0.870	0.870	0.870					0.870	0.697	1.132	0.130
	Population Age Ratio	0.141	0.121	0.104	0.089	0.077					0.469			
Gannet	Demographic Rate	0.424	0.829	0.891	0.895	0.919					0.919	0.7	0.761	0.181
	Population Age Ratio	0.183	0.077	0.064	0.057	0.051					0.568			
Cormorant	Demographic Rate	0.540	0.540	0.868							0.868	1.985	1.451	0.297
	Population Age Ratio	0.334	0.171	0.088							0.408			
Shag	Demographic Rate	0.513	0.737								0.858	1.303	0.792	0.262

Table 2.15. Calculating western inso Sea giver populations from Jessopp et al., 20	Table 2.15:	Calculating	Western	Irish Se	a diver	populations	from	Jessopp	et al.	, 20 ⁻
--	-------------	-------------	---------	----------	---------	-------------	------	---------	--------	-------------------

Bio-season	Total estimated Western	Proportion (from equivale	nt Furness, 2015 BDMPS)	Estimated abundance		
	Irish Sea abundance (all					
	divers)	Red-throated diver	Great northern diver	Red-throated diver	Great northern diver	
PBM (+RM)	8,916	0.9358	0.0642	8,344	572	
MFW	2,942	0.8467	0.1533	2,491	451	

Table 2.16: Adapted Irish component of BDMPS population

Species	Adapted Irish component of BDMPS population (Adults and immatures)						
	RM	РВМ	MFW	NB			
Kittiwake	40,626	40,626					
Great black-backed gull				4,603			
Herring gull				21,151			
Lesser black-backed gull	12,282	12,282	12,282				
Common tern	12,946	12,946					
Arctic tern	3,199	3,199					
Roseate tern	6,374	6,374					
Sandwich tern	5,535	5,535					
Guillemot				193,443			
Razorbill	31,484	31,484	31,484				
Puffin	4,036	4,036	4,036				
Red-throated diver	8,344	8,344	2,491				
Great northern diver	572	572	451				
Fulmar	15,530	15,530	15,530				
Manx shearwater	4,579	4,579					

Species	Adapted Irish component of BDMPS population (Adults and immatures)							
	RM	РВМ	MFW	NB				
Gannet	20,921	20,921						
Cormorant				8,996				
Shag	4,186	4,186	4,186					

Table 2.17: Updated regional populations including adapted Irish components

		Adapted BDMPS population (Adults and immatures)					
Species	BDMPS region(s)	RM	PBM	MFW	NB		
Kittiwake	UK western waters plus Channel	713,112	933,172				
	UK South-west & Channel +				53,405		
Great black-backed gull	UK West of Scotland						
Herring gull	UK Western waters				187,090		
Lesser black-backed gull	UK Western waters	171,513	171,513	51,663			
Common tern	UK Western waters	73,998	73,998				
Arctic tern	UK Western waters	72,227	72,227				
Roseate tern	West England & Wales	6,374	6,374				
Sandwich tern	UK Western waters	14,535	14,535				
Guillemot	UK Western waters				1,332,663		
Razorbill	UK Western waters	632,448	632,448	366,956			
Puffin	UK Western waters	300,433	300,433	300,433			
Red-throated diver	UK western waters plus Channel	12,717	12,717				
	NW England & Wales			4,148			
Great northern diver	NW England & Wales	872	872	751			
Fulmar	UK western waters plus Channel	836,419	836,419	564,592			

		Adapted BDMPS population (Adults and immatures)					
Species	BDMPS region(s)	RM	PBM	MFW	NB		
Manx shearwater	UK western waters plus Channel	1,585,474	1,585,474				
Gannet	UK Western waters	643,713	534,979				
Cormorant	SW England and Wales				18,406		
Shag	SW England and Wales	17,104	17,104	17,104	·		

2.5.2. Defining breeding season regional populations

The general approach followed to determine regional reference populations for seabird species in the breeding season has been to firstly determine the number of breeding adults within mean-maximum foraging range plus one standard deviation (Woodward *et al.*, 2019: Table 2.18) of the array site using data from the Seabird Monitoring Programme (SMP) online database (JNCC, 2023); or Seabird Count 4 data (Burnell *et al.*, 2023), where these sources do not align. For each species, a list of breeding colonies within foraging range of the array site is provided in Appendix B, with lists referenced in Table 2.18. For breeding herring gull and lesser black-backed gull regional populations, in the absence of robust population estimates for urban nesting birds within the SMP database, Irish urban gull breeding population estimates from the NPWS 2021 National Urban Gull Survey (Keogh and Lauder, 2021) were included within regional breeding season population estimates.

			_				
Species	Mean-max foraging range (km)	SD (km)	Mean-max foraging range + 1 SD (km)	Summary of colonies included in regional breeding population	Number of breeding adults within foraging range		
Kittiwake	156.1	144.5	300.6	See Table B-1	67,280		
Black-headed gull	18.5	-	18.5	No colonies in ra	nge		
Little gull NA – Not a breeding species in Ireland or UK – Any individuals observed during MFBS (May-Sep) considered non-breeders.							
Common gull	50	-	50	No colonies in ra	nge		
Great black- backed gull	73 (Max)	NA	73	See Table B-2	982		
Herring gull	58.8	26.8	85.6	See Table B-3	9,102		
Lesser black- backed gull	127	109	236	See Table B-4	34,945		
Sandwich tern	34.3	23.2	57.5	No colonies in ra	nge		
Roseate tern	12.6	10.6	23.2	No colonies in ra	nge		
Common tern	18.0	8.9	26.9	See Table B-5	1,018		
Arctic tern	25.7	14.8	40.5	See Table B-6	22		
Guillemot	73.2	80.5	153.7	See Table B-7	175,072		
Razorbill	88.7	75.9	164.6	See Table B-8	23,634		
Black guillemot	4.8	4.3	9.1	No colonies in ra	nge		
Puffin	137.1	128.3	265.4	See Table B-9	54,480		
Red-throated diver	9	-	9	No breeding in re	egion		
Great northern diver	NA – Not a breeding species in Ireland or UK – Absent during MFBS (Jun-Aug)						

 Table 2.18:
 Mean-maximum foraging range + 1 Standard Deviation (SD) for seabird species (from Woodward et al., 2019) and resultant estimates of numbers of breeding adults withing foraging range

Species	Mean-max foraging range (km)	SD (km)	Mean-max foraging range + 1 SD (km)	Summary of colonies included in regional breeding population	Number of breeding adults within foraging range
Fulmar	542.3	657.9	1200.2	NA – All breeding Ireland total (Burnell <i>et</i> <i>al.</i> , 2023)	69,394
Manx shearwater	1,346.8	1,018.7	2365.5	See Table B-10	1,283,319
Gannet	315.2	194.2	509.4	See Table B-11	238,718
Cormorant	25.6	8.3	33.9	See Table B-12	124
Shag	13.2	10.5	23.7	See Table B-13	128

During the breeding season, in addition to birds associated with breeding colonies, there will also be immature (nonbreeding) birds present within the region. To incorporate immature birds into regional breeding season population estimates, two methods have been used:

Method 1: Carry over of immature proportion from previous bio-season. If it assumed that immature birds may spend the summer in their wintering areas, then the regional breeding season population is calculated as the number of breeding adults within foraging range plus the number of immature individuals present in the regional population of the previous bio-season. Regional breeding season populations estimated in this way are shown in Table 2.19.

Species	Adults within foraging range	Immatures from previous bio-season	Total
Kittiwake	67,280	337,302	404,582
Black-headed gull	0	32,000	32,000
Little gull	NA – absent during breeding period		
Common gull	0	21,012	21,012
Great black-backed gull	982	32,364	33,346
Herring gull	9,102	108,138	117,240
Lesser black-backed gull	34,945	80,096	115,041
Sandwich tern	0	5,087	5,087
Roseate tern	0	2,626	2,626
Common tern	1,018	30,487	31,505
Arctic tern	22	24,413	24,435
Guillemot	175,072	637,013	812,085
Razorbill	23,634	295,353	318,987

Method 2: Number of immatures derived from number of breeding adults. If it is assumed that the number of immature birds within a regional breeding population is associated with the number of adults breeding within that region, then the regional breeding season population is calculated as:

The number of breeding adults within foraging range plus the number of immatures associated with that number of adults within a stable population structure. (i.e. Regional population = Breeding adults + (Breeding adults * Immature to adult ratio [Table 2.14, above]))

Regional breeding season populations estimated in this way are shown in Table 2.20.

Species	Adults within foraging range	Number of immatures estimated from number of adults and stable age structure imm:ad ratio	Total					
Kittiwake	67,280	60,386	127,666					
Black-headed gull	NA - no breeding colonies	within foraging range						
Little gull	NA – absent during breed	ing period						
Common gull	NA - no breeding colonies	NA - no breeding colonies within foraging range						
Great black-backed gull	982	1,510	2,492					
Herring gull	9,102	12,467	21,569					
Lesser black-backed gull	34,945	30,618	65,563					
Sandwich tern	NA - no breeding colonies	within foraging range						
Roseate tern	NA - no breeding colonies	NA - no breeding colonies within foraging range						
Common tern	1,018	713	1,731					
Arctic tern	22	11	33					
Guillemot	175,072	160,315	335,387					
Razorbill	23,634	20,707	44,341					
Black guillemot	194	326	520					
Puffin	51,609	43,435	95,044					
Red-throated diver	NA - no breeding colonies	within foraging range						
Great northern diver	NA - absent during breedi	ng period						
Fulmar	69,394	75,177	144,571					
Manx shearwater	1,283,319	1,452,969	2,736,288					
Gannet	238,718	181,560	420,278					
Cormorant	124	180	304					
Shag	128	101	229					

 Table 2.20:
 Regional breeding season population estimates using Method 2

2.5.3. Regional population estimates used in impact assessment

Table 2.21 presents the non-breeding and breeding season regional populations used for impact assessment for each species as determined following the processes outlined in sections 2.5.1 and 2.5.2.

Species	Estimated population within region in each bio-season (Adults + immatures)							
	RM	MFB		РВМ	MFW	В		NB
		Method 1	Method 2			Method 1	Method 2	
Kittiwake	713,112	404582	127666	933,172				
Little gull	1,539			1,539	1,539			
Black-headed gull	100,000	32,000		100,000				
Great black- backed gull						33,346	2,492	53,405
Common gull	67,500	21,012		67,500				
Herring gull						117,240	21,569	187,090
Lesser black- backed gull	171,513	115,041	65,563	171,513	51,663			
Sandwich tern	14,535	5,087		14,535				
Roseate tern	6,374	2,626		6,374				
Common tern	73,998	31,505	1,731	73,998				
Arctic tern	72,227	24,435	33	72,227				
Guillemot						812,085	335,387	1,332,663

Table 2.21: Species specific bio-seasonal population estimates used for impact assessment

Species	Estimated popul	Estimated population within region in each bio-season (Adults + immatures)								
	RM	MFB		РВМ	MFW	В		NB		
		Method 1	Method 2	-		Method 1	Method 2			
Razorbill	632,448	318,987	44,341	632,448	366,956					
Puffin	300,433	188,907	95,044	300,433	300,433					
Black guillemot							1,043	1,043		
Red-throated diver	12,717	4,472		12,717	4,148					
Great northern diver	872			872	751					
Fulmar	843,724	508,130	144,571	843,724	571,897					
Manx shearwater	1,585,474	2,125,206	2,736,288	1,585,474						
Gannet	643,713	516,802	420,278	534,979						
Cormorant						11,020	304	18,406		
Shag	17,104	7,688	229	17,104	17,104					

3. Intertidal ornithology

This section describes the approach to baseline characterisation of intertidal ornithological receptors.

3.1. Summary of data sources

A desk-based review was carried out in relation to intertidal ornithology. Table 3.1 below shows the literature and data sources used for baseline characterisation of the landfall survey area.

Table 3.1: Data sources for intertidal ornithology baseline characterisation for the Project

Source	Date	Summary	Coverage of study area
Contemporary site-speci	fic baseline characterisatio	n surveys	
Diurnal tidal landfall bird survey data	2019 – 2023	Eighty-one diurnal surveys using an adapted I-WeBS methodology conducted approximately twice monthly (excluding April 2020 and early May 2020) between October 2019 and March 2023.	Covers the OECC intertidal landfall area and a wider area within South Dublin Bay between the Great South Wall of
Post-breeding tern aggregation survey data	2020 and 2021	Eight dusk surveys during mid-July to mid- September (four surveys each year) to record the distribution and number of terns using post- breeding roost sites.	Dublin Port and the north- west wall of Dun Laoghaire Harbour
Additional data sources			
I-WeBS (Irish Wetland Bird Survey)	2016/17 – 2020/21	Seasonal peak abundances of species within intertidal habitats in Dublin Bay site from monthly I-WeBS coverage between September and March each year. Mean monthly abundances (September to March) of species in intertidal habitats within Dublin Bay I-WeBS sub- sites collectively covering area congruous to the contemporary diurnal tidal landfall and post-breeding tern aggregation survey	The wider Dublin Bay I- WeBS site covers all intertidal habitats surrounding Dublin Bay. Several Dublin Bay I- WeBS sub-sites collectively cover an area which is the same as the area covered during contemporary diurnal tidal landfall and post-breeding tern aggregation surveys.

Source	Date	Summary	Coverage of study area
		area [2017/18 to 2020/21 non-breeding seasons only].	
Post-breeding tern survey data	2013 – 2018	Roosting tern numbers, site use timings, distributions and sources of disturbance from summaries of survey data collected during each post-breeding period (mid-July to mid- September) within South Dublin Bay each year.	Focus upon intertidal habitat within South Dublin Bay between the Great South Wall of Dublin Port and the north- west wall of Dun Laoghaire Harbour.

3.2. Existing data sources

3.2.1. I-WeBS counts of South Dublin Bay

Irish Wetland Bird Survey (I-WeBS) information is collected for a number of subsites throughout the Dublin Bay area during each non-breeding period (September to March). Annual peak counts of the wider Dublin Bay I-WeBS sites for the most recently available five years (2016/17 to 2020/21) were obtained from the BirdWatch Ireland website (BWI) (Site Summary Tables_S27 (caspio.com)) and are summarised in Table 3.2.

As the OECC and OECC intertidal landfall passes through South Dublin Bay, additional I-WeBS data from subsites within this area were obtained directly from BWI [email received from B. Burke, BWI, 12/12/2022]. Figure 3.1 shows the areas covered within the wider Dublin Bay I-WeBS site, and the subsites within South Dublin Bay for which additional I-WeBS data were obtained.

From the more detailed I-WeBS data obtained for subsites within South Dublin Bay (for which information for the 2017/18 to 2020/21 non-breeding seasons were provided), mean monthly total counts between September and March across all sub-sites are provided in Table 3.3.

Table 3.2: All Dublin Bay I-WeBS data: annual peak counts 2016/17-2020/21

			Peak	count			1% national	
Species	2016/17	2017/18	2018/19	2019/20	2020/21	Mean	population (Burke <i>et al.</i> , 2018)	Peak months
Mute Swan	5*	11	9*	32*	7*	13	90	Oct
Whooper Swan	0	0	11*	1	0	2	150	Jan, Oct
Light-bellied Brent Goose	4420*	3331	3662	5848	1472	3747	350	Dec
Shelduck	1811	1241	1632	1619	2586	1778	100	Dec
Wigeon	1839	918	1314	1833	1082	1397	560	Nov
Teal	1654	1030	2187	1392	930*	1439	360	Dec
Mallard	64*	82	221*	133*	96	119	280	Sep
Pintail	190	214	318	192*	252	233	20	Jan
Shoveler	116	144	122	124	81	117	20	Dec
Long-tailed Duck	2	0	0	0	1	1	-	Dec
Common Scoter	19	0	24	10	0	11	110	Oct
Goldeneye	1*	0	2	0	0	1	40	Feb, Mar
Red-breasted Merganser	80*	37	40*	96	36*	58	25	Mar, Oct
Red-throated Diver	6	5	4	1	0	3	20	Feb
Great Northern Diver	1*	1	1*	2	1	1	20	Mar, Nov, Dec
Little Grebe	4	1*	3*	8	6	4	20	Dec
Great Crested Grebe	192	34	388	106*	262	196	30	Nov
Cormorant	95*	112*	100*	157*	183*	129	110	Sep
Shag	19*	10	10	22*	1*	12	-	Nov
Little Faret	70*	57	71*	130*	140*	94	20	Sep
Grev Heron	28*	24	27*	82*	19*	36	25	Oct
Moorhen	3*	2	4	6	1	3	-	Nov
Oveteresteher	4042	0075	2270	2242	0466*	2115	-	lon Oct Doo
Dinged Diever	4042	2375	33/0	3313	2400	3115	610	Jan, Oci, Dec
Colden Diever	200	1000	140	1610	70	100	020	Dec
Golden Plover	1010	1322	1430	1010	90	1093	920	Oci
	240	190	499	000 775*	206	342	30	Feb Son Doo
Lapwing	20	SZ SEE A	7256*	5701*	5046	6277	160	Sep, Dec
Sandarling	27/*	201*	726*	522*	749*	540	85	Son Oct
Curlow Sondpinor	0	301	730	1*	740	049	65	
	0	0	0	'	0	0	-	Oct
Purple Sandpiper	0	0	0	1	1	0	20	Jan, Oct
Dunlin	8280	5884	/4/4	6017	10362	7603	460	Jan, Mar
Snipe	53*	10	43	15*	5	25	-	Jan
Black-tailed Godwit	1274*	1474*	3369*	2987*	1499	2121	200	Feb, Mar, Sep, Oct
Bar-tailed Godwit	2653*	1599*	1773	2736*	1833*	2119	170	Mar
Whimbrel	0	0	2*	2*	1*	1	-	Sep
Curlew	750*	494	1323*	1162*	715*	889	350	Sep
Redshank	1430*	2274	2312*	2299*	2517*	2166	240	Sep
Greenshank	35	14	44*	51*	48*	38	20	Oct
Turnstone	286*	334	216	445*	259	308	95	Oct
Kingfisher	0	0	4	1*	1	1	-	Nov
Black-headed Gull	2393*	1375*	3243*	3803	4842*	3131	-	Sep
Common Gull	213*	141*	387*	538*	286*	313	-	Mar
Lesser Black-backed Gull	5*	2*	69*	8	135*	44	-	Sep, Oct
Herring Gull	450*	607*	483*	374*	694*	522	-	Sep
Great Black-backed Gull	151	108	138*	145	119*	132	-	Sep
Mediterranean Gull	68*	6	14*	30*	7*	25		Oct
Sandwich Tern	00	Q*	75*	JZ 2*	10*	20	-	Son
Sanuwich Tem	0	8	15	3	12	20	-	Sep

			Peak o	ount			1% national	
Species	2016/17	2017/18	2018/19	2019/20	2020/21	Mean	population (Burke <i>et al.</i> , 2018)	Peak months
Common Tern	0	0	102*	10*	2*	23	-	Sep
Kittiwake	0	40*	0	0	0	8	-	Mar
Ring-billed Gull	1*	0	0	0	0	0	-	Mar, Sep
Glaucous Gull	1	0	0	0	0	0	-	Jan
Iceland Gull	1*	0	1	0	0	0	-	Feb, Mar, Dec
Yellow-legged Gull	1	0	0	0	0	0	-	Dec

Source: Dublin Bay I-WeBS site counts: Site Summary Tables_S27 (caspio.com)

Peak counts recorded outside the midwinter period (Nov, Dec, Jan) are marked with an asterisk (*). This may indicate that higher numbers occurred during passage periods, or may be due to a lack of counts in the midwinter months. Blank cells indicate that a species was absent.

South Dublin Bay I-WeBS site counts corresponding with contemporary tidal landfall bird survey area are given in Table 3.3, below.

Table 3.3	South	Dublin	Bay	I-WeBS	data:	Mean	monthly	counts
-----------	-------	--------	-----	--------	-------	------	---------	--------

		Mean r	nonthly c	ount (201	6/17 to 20	020/21)		1% national
Species	Sep	Oct	Nov	Dec	Jan	Feb	Mar	population (Burke e <i>t al.</i> , 2018)
Light-bellied brent goose	5.50	156.75	166.00	167.75	1011.33	682.00	206.75	350
Mute swan	0	0	4.00	2.00	0	0	0	90
Whooper swan	0	6.00	0	0	0	0	0	150
Shelduck	0	2.00	0	1.00	0	10.50	8.67	100
Wigeon	0	10	0	0	2.00	17.00	0	560
Mallard	0	4.00	2.00	4.00	0	0	2.00	280
Teal	0	1.00	2.00	13.00	62.00	44.00	128.00	360
Common scoter	0	4.00	10	0	14.00	60	6.00	110
Red-breasted merganser	24.50	28.33	15.00	8.00	4.50	11.00	31.50	25
Moorhen	0	0	3.00	3.00	0	0	1.00	-
Little grebe	0	0	1.00	1.00	0	0	1.00	20
Great crested grebe	41.00	12.50	148.00	74.00	86.00	32.00	53.67	30
Oystercatcher	846.50	1315.00	928.50	1112.50	1577.25	986.00	444.25	610
Lapwing	0	0	0	3.00	0	0	0	850
Golden plover	0	0	3500	1425.00	0	500	0	920
Grey plover	0	2.50	12.50	12.25	21.33	4.50	0	30
Ringed plover	39.50	4.33	95.00	84.33	12.50	88.33	27.50	120
Curlew	57.00	54.75	39.25	20.67	22.33	12.50	23.00	350
Bar-tailed godwit	106.50	21.67	253.00	229.50	298.00	778.00	20.25	170
Black-tailed godwit	43.50	136.67	18.00	188.50	12.75	2.00	40	200
Turnstone	9.00	63.00	80	31.00	22.00	25.00	10.50	95
Knot	161.00	60.33	1027.00	2257.00	22.00	4650.50	187.67	160

		Mean r	nonthly c	ount (201	6/17 to 20	020/21)		1% national
Species	Sep	Oct	Nov	Dec	Jan	Feb	Mar	population (Burke <i>et al.</i> , 2018)
Sanderling	4.00	440	77.33	184.00	215.75	301.00	27.00	85
Dunlin	42.25	83.00	1036.25	1193.50	2295.00	3399.00	1520	460
Redshank	284.50	203.50	165.75	230.50	171.50	107.33	72.75	240
Greenshank	6.50	5.25	2.50	8.00	2.33	2.33	1.50	20
Kittiwake	0	0	0	0	0	0	40	-
Black-headed gull	1323.50	608.75	504.00	515.25	1131.50	848.00	370	-
Mediterranean gull	0	0	0	1.00	2.50	1.00	7.00	-
Common gull	14.25	9.67	29.00	26.00	13.00	17.33	30.75	-
Great black-backed gull	7.75	11.67	9.67	12.00	22.75	20.67	4.67	-
Herring gull	50.75	19.00	20.50	11.75	60.50	16.67	140.50	-
Lesser black-backed gull	5.00	1.50	1.33	4.00	2.50	0	3.33	-
Sandwich tern	27.00	1.50	0	0	0	0	1.00	-
Common tern	2.00	0	0	0	0	0	0	-
Red-throated diver	0	0	1.50	5.00	2.00	3.00	1.00	20
Great Northern diver	0	0	1.00	0	0	0	1.00	20
Cormorant	48.50	32.25	47.00	15.00	22.50	14.00	7.67	110
Shag	21.00	9.00	5.50	10	0	11.00	1.00	-
Little egret	1.00	4.67	2.00	1.33	5.00	1.00	2.00	20
Grey heron	12.00	10	4.25	1.00	2.50	1.67	6.00	25
Kingfisher	1.00	0	0	0	0	0	0	-

Source: BirdWatch Ireland

3.2.2. Post-breeding tern aggregation survey summaries

South Dublin Bay, specifically the Sandymount Strand and Merrion Gate areas, are the largest post-breeding tern aggregation site in Ireland and may be the most important tern staging site in north-west Europe (Burke *et al.*, 2020). Consequently, considerable survey effort has been undertaken within this area to describe the numbers, distributions and timing of the usage of this site. Post-breeding tern surveys in South Dublin Bay have been organised as part of a wider programme of surveys around Ireland since 2016 under the auspices of I-WeBS (Burke *et al.*, 2020). Prior to this, numerous surveys to gather information on the use of South Dublin Bay by terns in the post-breeding period have been undertaken since the importance of this site was first noted in 1959 (Merne *et al.*, 2008).

Five species of tern, namely black tern, sandwich tern, common tern, roseate tern and Arctic tern, have been regularly recorded during surveys of post-breeding tern roosting aggregations within South Dublin Bay. Typically, the vast majority of birds within roosting aggregations are common terns, with Arctic and roseate terns the next most prevalent and sandwich and black terns less frequently and in smaller numbers (Tierney *et al.*, 2016). Common tern, Arctic tern and roseate tern all belong to the genus Sterna. Due to the similar appearance of these Sterna species and low light levels during the crepuscular periods in which roosting tern counts are typically undertaken, differentiation of these species is frequently not possible. Furthermore, due to the large number of densely aggregated roosting birds which frequently occur within South Dublin Bay, obtaining accurate counts of sandwich and black tern at such times may also not be possible. For this reason, peak counts of all tern species collectively within South Dublin Bay between 2013 and 2018 are provided in Table 3.4.

 Table 3.4: Peak counts from post-breeding tern aggregation surveys in South Dublin Bay 2013 – 2018

	Year							
	2013 2014 2015		2015	2016	2017	2018	Mean	
Peak count	6,645	2,264	4,035	17,440	7,000	c.6,800	c.7,364	
Month of peak count	Sep	Aug	Aug	Aug	Aug	Aug	-	
Source	т	ierney <i>et al.</i> , 201	6	Tierney <i>et</i> <i>al.</i> , 2016 Burke and Crowe, 2016	Burke <i>et al.</i> , 2017	Burke <i>et al.</i> , 2020 (taken from graph)	-	

Typically, the number of terns using South Dublin Bay builds from late July onwards when birds disperse from the breeding colonies (Tierney *et al.*, 2016). Highest peak counts are usually observed within South Dublin Bay in August (Table 3.4), with peak activity occurring between mid-August and mid-September (Merne *et al.*, 2008; Merne, 2010). There are roosting terns present at South Dublin Bay for up to two months each year (late July to late September), building reserves for migration and commencing their moult (Cabot & Nisbet 2013, Ginn & Melville 1983). Although principally used as a night roost, birds begin to roost at least one hour before sunset during this period (Merne *et al.*, 2008; Merne, 2010).

Merne *et al.*, 2008 describe the primary roosting area used by post-breeding tern aggregations within South Dublin Bay as exposed sandbanks between the Martello Towers at Sandymount (GR 319524, 232021) and Williamstown (GR 320796, 229979). This area is highlighted in Figure 3.2. Merne *et al.*, 2008 also note that terns are less frequently recorded outside this area on adjacent sandflats extending north to Irishtown and the South Bull Wall and south to Blackrock (also highlighted in Figure 3.2), but that these birds typically join birds within the primary roosting area. The summary of areas used by roosting terns provided in Merne *et al.*, 2008, is broadly consistent with usage of the area observed in surveys during 2013 to 2017, as highlighted in Figure 3.2.

Disturbance events impacting roosting tern aggregations within South Dublin Bay are characterised as occurring frequently (Tierney *et al.*, 2016). This disturbance is identified as primarily a consequence of recreational activities within the intertidal area in the form of walkers, joggers and dog walkers (Burke *et al.*, 2018), with non-leashed dogs and watersports also mentioned in this regard by Merne, 2010. Recreational disturbance is identified among potential impacts within the conservation objectives of South Dublin Bay and River Tolka Estuary SPA (NPWS, 2015) and the importance of nearby alternative roosting areas has been highlighted to ensure that disturbed birds are not required to travel far if disturbed (Burke *et al.*, 2018).

3.3. Contemporary site-specific baseline characterisation surveys

3.3.1. Tidal landfall bird surveys

Table 3.5 and Table 3.6 below show the dates, times and environmental conditions recorded during tidal landfall bird surveys and post-breeding tern aggregation surveys.

Survey	Survey	Surve	y times	Tidal	Survey conditions
number	date	Start	End	state	
1	17/10/19	15:40	18:20	Falling	Wind: SW-SSE Force 2-4; Cloud cover: 6-7/8; No precipitation
2	29/10/19	10:32	13:25	High	Wind: E Force 4-5; Cloud cover: 2-6/8; No precipitation
3	14/11/19	10:55	12:32	Rising	Wind: N-NE Force 4-6; Cloud cover: 5-8/8; No precipitation
4	20/11/19	12:50	15:40	Rising	Wind: SE-SSE Force 4-5; Cloud cover: 8/8; No precipitation
5	04/12/19	08:12	11:35	Low	Wind: SW-SSW Force 1-2; Cloud cover: 1-7/8; No precipitation
6	17/12/19	13:42	15:30	High	Wind: SW-WSW Force 1-2; Cloud cover: 0-1/8; No precipitation
7	09/01/20	11:54	15:58	Falling	Wind: N-NW Force 1-2; Cloud cover: 5-8/8; No precipitation
8	20/01/20	12:01	14:23	Low	Wind: SW-WSW Force 0-1; Cloud cover: 0/8; No precipitation
9	18/02/20	08:45	11:24	Falling	Wind: W-SW Force 3-4; Cloud cover: 3-5/8; No precipitation
10	24/02/20	10:48	12:35	High	Wind: SE-ESE Force 2-4; Cloud cover: 8/8; No precipitation
11	02/03/20	11:47	14:12	Rising	Wind: W-WNW Force 2-3; Cloud cover: 0-3/8; No precipitation
12	26/03/20	11:14	13:57	High	Wind: W Force 1-2; Cloud cover: 6-8/8; No precipitation
13	30/05/20	04:33	08:33	High	Wind: N/A Force 0; Cloud cover: 0/8; No precipitation
14	04/06/20	06:17	09:17	Rising	Wind: W-WNW Force 2-3; Cloud cover: 7-8/8; No precipitation
15	25/06/20	07:16	10:16	Low	Wind: E-NE Force 1-2; Cloud cover: 0/8; No precipitation
16	03/07/20	06:03	09:25	Rising	Wind: SW Force 4; Cloud cover: 6-7/8; No precipitation
17	28/07/20	07:47	10:46	Falling	Wind: NW-WNW Force 3-4; Cloud cover: 2-3/8; No precipitation
18	21/08/20	09:12	12:32	Rising	Wind: SW Force 4; Cloud cover: 4/8; Light rain
19	31/08/20	06:48	10:11	Low	Wind: S Force 3; Cloud cover: 3/8; Light rain
20	08/09/20	08:04	11:22	Low	Wind: SW Force 3; Cloud cover: 7/8; No precipitation
21	24/09/20	06:56	09:48	Falling	Wind: SW Force 5; Cloud cover: 5/8; Heavy rain
22	12/10/20	09:45	12:46	Falling	Wind: NW Force 3; Cloud cover: 8/8; Heavy rain
23	29/10/20	14:29	17:47	Low	Wind: SW Force 4; Cloud cover: 7/8; Heavy rain
24	05/11/20	09:17	12:44	Rising	Wind: W Force 2; Cloud cover: 2/8; No precipitation
25	23/11/20	07:37	10:00	Falling	Wind: S Force 2; Cloud cover: 4/8; No precipitation
25	02/12/20	11:06	13:56	High	Wind: SW Force 3; Cloud cover: 6/8; Light rain
27	08/12/20	12:45	16:07	Rising	Wind: W Force 4; Cloud cover: 7/8; Light rain
28	18/01/21	14:14	16:32	High	Wind: SW Force 3; Cloud cover: 5/8; Heavy rain
29	22/01/21	10:41	14:03	Low	Wind: W Force 2; Cloud cover: 7/8; no precipitation
30	02/02/21	09:50	13:40	Rising	Wind: SW Force 3; Cloud cover: 7/8; Rain
31	23/02/21	10:28	13:26	Falling	Wind: SE Force 5; Cloud cover: 8/8; Rain
32	08/03/21	11:42	15:10	Low	Wind: SW Force 1; Cloud cover: 3/8; no precipitation
33	16/03/21	08:32	10:35	Rising	Wind: NW Force 2; Cloud cover: 6/8; No precipitation
34	13/04/21	11:59	14:13	High	Wind: E Force 1; Cloud cover: 6/8; Rain
35	22/04/21	10:13	12:36	Falling	Wind: NE Force 3; Cloud cover: 1/8: No precipitation
36	13/05/21	11:42	14:45	High	Wind: N Force 3; Cloud cover: 8/8; Precipitation: None

Table 3.5: Tidal landfall bird survey details

Survey	Survey	Surve	y times	Tidal	Survey conditions
number	date	Start	End	state	Survey conditions
37	25/05/21	13:19	15:10	Falling	Wind: SW Force 4; Cloud cover: 6/8; Light rain
38	15/06/21	11:03	12:12	Rising	Wind: E Force 3; Cloud cover: 3/8; No precipitation
39	28/06/21	19:07	19:50	Low	Wind: W Force 3; Cloud cover: 2/8; No precipitation
40	07/07/21	19:07	20:30	Falling	Wind: S Force 2; Cloud cover: 6/8; Light rain
41	12/07/21	12:48	14:34	High	Wind: W Force 2; Cloud cover: 6/8; Rain
42	17/08/21	05:38	08:05	Low	Wind: S Force 4; Cloud cover: 8/8; Rain
43	24/08/21	09:01	11:40	Rising	Wind: W Force 2; Cloud cover: 6/8; Rain
44	15/09/21	08:26	14:14	Low	Wind: E Force 4; Cloud cover: 7/8; Rain
45	21/09/21	14:07	17:30	Falling	Wind: Variable Force 1: Cloud cover: 3/8: No precipitation
10	21/00/21	11:32	15:52	High	
46	15/10/21	09:45	12:00	Falling	Wind: WNW Force 1; Cloud cover: 0-1; No precipitation
47	27/10/21	15:10	17:40	High	Wind: S-SSW Force 3; Cloud cover: 8; Light showers
48	09/11/21	09:47	12:30	Rising	Wind: WNW Force 1-2; Cloud cover: 5-6; Drizzle/Mist
49	19/11/21	09:55	12:35	High	Wind: SW-WSW Force 1; Cloud cover: 5-6; No precipitation
50	10/12/21	08:02	11:02	Low	Wind: W Force 3; Cloud cover: 0; No precipitation
51	20/12/21	13:42	16:10	Falling	Wind E-ENE Force 3; Cloud cover: 8; No precipitation
52	12/01/22	09:26	12:26	Falling	Wind NW-NNW Force 2; Cloud cover: 1; No precipitation
53	19/01/22	11:18	14:00	High	Wind NE Force 4; Cloud cover: 6-7; No precipitation
54	09/02/22	09:35	12:20	Low	Wind: WNW Force 1-2; Cloud cover: 1-2; No precipitation
55	21/02/22	09:46	12:05	Rising	Wind: WNW Force 4-5; Cloud cover: 1-2; No precipitation
56	03/03/22	10:39	13:10	High	Wind: W-NW Force 2-3; Cloud cover: 5-6; No precipitation
57	14/03/22	10:27	13:05	Falling	Wind: SW Force 2; Cloud cover: 6-7; Light showers
58	05/04/22	06:52	10:00	Low	Wind: W Force 2-3; Cloud cover: 6-7/8; No precipitation/Dizzle/Mist
59	26/04/22	17:05	19:30	Rising	Wind: E Force 1; Cloud cover: 1-2; No precipitation
60	10/05/22	12:03	14:40	Low	Wind: SW Force 3; Cloud cover: 2-3, No precipitation
61	24/05/22	18:59	21:35	High	Wind: W-WSW Force 2-3; Cloud cover: 7-8; Light showers
62	13/06/22	12:43	15:40	Falling	Wind: SW-Var Force 1; Cloud cover: 4-5; No precipitation
63	20/06/22	10:35	13:35	Rising	Wind: WNW-Var Force 1-2; Cloud cover: 1-2; No precipitation
64	14/07/22	08:04	11:04	Rising	Wind: NNE Force 2-3; Cloud cover 4-5; No precipitation
65	28/07/22	10:59	13:45	High	Wind: E-ENE Force 1-2; Cloud cover: 5; No precipitation
66	11/08/22	10:28	13:28	High	Wind SE Force 2; Cloud cover 0; No precipitation
67	24/08/22	12:08	15:08	Falling	Wind ENE-NNE Force 4; Cloud cover 1-2; No precipitation
68	13/09/22	09:36	12:30	Rising	Wind: E-ESE Force 2-3; Cloud cover 1/8; No precipitation
69	27/09/22	11:55	14:40	High	Wind: NW-WNW Force 3; Cloud cover: 8/8; Drizzle/Mist
70	10/10/22	14.37	17.30	Failing	Wind, SW-SSW Force 1-2, Cloud cover, 6-7/8, No precipitation
71	18/10/22	10:30	13:30	LOW	Wind: E-ESE Force 2-3; Cloud cover: 6-7/8; No precipitation
72	10/11/22	11:57	14:45	Rising	Wind: VAR-ESE Force 1-2; Cloud cover: 0-1/8; No precipitation
73	20/11/22	13.09	10.09	⊓ign Lliαh	Wind: NW Force 2-3, Cloud cover: 7-6/8, Drizzle/Wist
74	12/12/22	12.19	15.20	⊓ign	Wind: VAR-N FOICe 0-1, Cloud cover: 5/8, DTIZZIE/Wist
75	16/01/22	12.04	10.00	Dising	Wind: SW Folce 2, Cloud cover: 1/6, No precipitation
70	23/01/23	13.24	11.20	High	Wind: SSE-VAR Force 0.1: Cloud cover: 4-5/8: No precipitation
79	11/02/22	00.24	14.10	Low	Wind: SE-ESE Force 2-3: Cloud cover: 5-7/9: No precipitation
70	22/02/23	11.11	12.20	High	Wind: NW-WNW Force 4: Cloud cover: 5-7/8; No precipitation
80	08/03/23	10.44	13.40	High	Wind: F-ENE Force 3-4: Cloud cover: 6-7/8: Light showers
00	21/02/22	00.44	10.44	High	Wind: SW-WSW Force 3: Cloud cover: 5 6/8: Hoowy showers
01	21/03/23	09.02	12.30	riigit	wind. Sw-wSw Force S, Cloud Cover. S-0/0, Heavy Showers

Source: Natural Power

Table 3.6: Post-breeding tern aggregation surveys

Survey	Survey	Surve	y times	Supert	Tidal	Survey conditions
number	date	Start	End	- Sunsei	state	Survey conditions
1	17/07/20	19:41	21:56	21:42	Rising	Wind: WSW Force 3; Cloud cover: 3/8; No precipitation
2	14/08/20	18:53	21:08	20:54	Rising	Wind: NNE Force 3; Cloud cover: 6/8; No precipitation
3	26/08/20	18:26	20:41	20:27	High	Wind: variable Force 2; Cloud cover: 7/8; No precipitation

Survey	Survey	Survey	/ times	Supert	Tidal	Survey conditions
number	date	Start	End	- Sunsei	state	Survey conditions
4	25/09/20	17:14	19:30	19:15	Rising	Wind: NW Force 5; Cloud cover: 3/8; No precipitation
5	30/07/21	20:09	22:36	21:23	Falling	Wind: S Force 3; Cloud cover: 6/8; No precipitation
6	04/08/21	19:50	21:50	21:14	Rising	Wind: SE Force 1; Cloud cover: 5/8; No precipitation
7	18/08/21	19:09	21:05	20:46	Rising	Wind: S Force 3; Cloud cover: 7/8; No precipitation
8	14/09/21	18:20	21:11	19:42	High	Wind: E Force 3; Cloud cover: 7/8; Light rain

Source: Natural Power

3.3.2. Survey methodology

3.3.2.1. Adapted I-WeBS

Point counts of intertidal habitats and inshore waters were undertaken in line with standard I-WeBS methodology (I-Webs), altered to account for spatial distributions and behaviours as per the Low Tide Waterbird Survey Method developed by Bird Watch Ireland and the NPWS (Lewis & Tierney, 2014). Counts were timed to provide approximately equal survey effort coverage during all tidal states.

Surveys were undertaken on a twice-monthly basis throughout the year (as opposed to once-monthly counts taking place during the winter months only, as per standard I-WeBS methodology), commencing in October 2019 and continuing until March 2023.

Counts were visited twice per month, with coverage alternating between high/low tide one month and rising/falling tide the next in order to provide approximately equal survey effort coverage during all tidal states.

Counts were conducted from suitable vantage points in supra-tidal areas by two surveyors, with both surveyors coordinating survey coverage to ensure complete coverage of the survey, while minimising the potential for double counting. In most diurnal surveys and all post-breeding tern aggregation surveys surveyors worked concurrently for the duration of the survey.

The species, numbers and behaviours of birds within the survey area was noted, and the locations of flocks and individuals mapped onto high resolution field maps.

In addition, surveyors collected information relating to any disturbance events observed during adapted I-WeBS counts and weather the conditions during surveys. Surveys were not conducted where conditions were considered to prevent proper counts being undertaken, specifically during high wind speeds (> Beaufort 5) or periods of low visibility.

3.3.2.2. Post-breeding tern aggregation surveys

During the periods in which staging terns were present within South Dublin Bay (mid-July to mid-September 2020 and 2021), additional surveys timed to coincide with dusk were undertaken; four in each year.

4. Species recorded

4.1. Offshore ornithology

Seabird species shown in Table 4.1 were recorded within the array site plus a 4 km buffer during contemporary digital aerial and/or boat-based ESAS survey. A number of species were only recorded in the study area in numbers determined by expert judgement to be too low to warrant detailed species accounts (these species are shown purple cells in italic font within the table). Instead, data for these species are presented in the form of raw counts within Table 2.2, Section 2.2 Historic site-specific baseline characterisation surveys. Those species highlighted in bold in Table 4.1 form the basis of detailed accounts for this baseline technical report.

Table 4.1: Seabird species recorded during site-specific digital aerial and boat-based surveys of the array site and 4 km buffer

Species	Recorded during DAS surveys	Recorded during boat-based surveys
	(May 2020 to April 2022)	(Oct 2018 to Aug 2020)
Common scoter	1	1
Red-breasted merganser	V	-
Kittiwake	\checkmark	✓
Sabine's gull	-	\checkmark
Black-headed gull	\checkmark	\checkmark
Little gull	\checkmark	\checkmark
Common gull	\checkmark	\checkmark
Great black-backed gull	\checkmark	\checkmark
Herring gull	\checkmark	\checkmark
Lesser black-backed gull	\checkmark	\checkmark
Sandwich tern	\checkmark	-
Little tern	\checkmark	-
Roseate tern	\checkmark	\checkmark
Common tern	\checkmark	\checkmark
Arctic tern	\checkmark	\checkmark
Great skua	\checkmark	\checkmark
Pomarine skua	\checkmark	\checkmark
Arctic skua	\checkmark	1
Guillemot	\checkmark	\checkmark
Razorbill	\checkmark	\checkmark
Black guillemot	\checkmark	\checkmark
Puffin	\checkmark	\checkmark
Red-throated diver	\checkmark	\checkmark
Black-throated diver	V	-
Great Northern diver	\checkmark	✓
European storm petrel	V	\checkmark
Fulmar	\checkmark	✓
Great shearwater	-	\checkmark
Manx shearwater	\checkmark	✓
Balearic shearwater	\checkmark	-
Gannet	\checkmark	\checkmark
Cormorant	\checkmark	\checkmark
Shag	\checkmark	\checkmark

4.2. Intertidal ornithology

Bird species shown in Table 4.2 were recorded within the area of the OECC intertidal landfall in South Dublin Bay during intertidal landfall surveys undertaken between October 2019 and March 2023. A number of species were only recorded in the study area in maximum numbers considered to be too low to warrant detailed species accounts (these species are shown in grey cells in italic font within the table). The threshold for this distinction was generally considered to be species for which the maximum count during any survey was less than 0.5% of the national population of wintering waterbirds in Ireland (i.e., half of the 1% national population value presented in Burke *et al.*, 2018). As this threshold value is not available for the majority of seabird species which may occur in estuarine habitats, expert opinion in relation to regional populations (Table 2.21) was used to determine whether numbers were too low to warrant detailed species accounts. Decisions to this effect were made on the basis of maximum numbers recorded being very low, and/or the frequency of species being recorded being low.

An exception to the selection criteria outlined above was made in relation to Qualifying Interests of South Dublin Bay and River Tolka Estuary SPA or North Bull Island SPA. Detailed species accounts are provided for these species (highlighted in underlined text) regardless of the numbers recorded during landfall survey works. Those species highlighted in bold in **Table 4.2** from the basis of detailed accounts for this baseline technical report.

Peak count (Number of surveys)											
Species	Non-breeding 2019/20	Breeding 2020	Non-breeding 2020/21	Breeding 2021	Non-breeding 2021/22	Breeding 2022	Non-breeding 2022/23	0.5% of the national population of wintering			
Species	Oct 19 to Mar 20	May 20 to Sep 20	Oct 19 to Mar 20	Apr 21 to Sep 21	Oct 21 to Mar 22	April to Sep 22	Oct 22 to Mar 23	waterbirds in Ireland (Burke <i>et al.</i> , 2018)			
	(12 surveys)	(9 surveys)	(12 surveys)	(12 surveys)	(12 surveys)	(10 surveys)	(14 surveys)				
Light-bellied brent goose	446 (12)	164 (1)	602 (10)	45 (2)	346 (12)	412 (2)	470 (13)	175			
Pink-footed goose	49 (1)	0	0	0	0	0	0	-			
Mute swan	1 (1)	2 (1)	1 (1)	0	0	0	0	45			
Shelduck	18 (6)	45 (7)	5 (3)	9 (7)	27 (10)	12 (6)	20 (12)	50			
Wigeon	4 (1)	0	0	0	1 (1)	0	4 (2)	280			
Mallard	8 (2)	0	6 (1)	6 (7)	7 (2)	0	7 (3)	140			
Shoveler	0	0	6 (1)	0	1 (1)	0	0	10			
Gadwall	0	0	0	0	0	0	4 (1)	10			
Eider	8 (1)	0	0	0	0	0	0	27			
Teal	71 (5)	0	6 (3)	0	0	0	17 (8)	180			
Common scoter	99 (4)	13 (1)	8 (2)	14 (3)	66 (4)	0	50 (9)	55			
Long-tailed duck	3 (1)	0	3 (3)	1 (1)	1 (1)	0	1 (1)	-			
Goldeneye	1 (4)	0	0	0	0	0	5 (1)	20			
Red-breasted merganser	33 (12)	35 (5)	60 (11)	151 (8)	44 (11)	14 (6)	56 (14)	12			
Red-throated diver	19 (8)	0	9 (11)	71 (2)	15 (10)	0	15 (11)	10			
Great northern diver	5 (6)	0	3 (3)	2 (1)	1 (2)	0	4 (4)	10			
Manx shearwater	0	9 (1)	0	0	0	0	0	-			
Great crested grebe	912 (11)	120 (4)	347 (12)	14 (7)	239 (11)	52 (7)	228 (12)	15			
Red-necked arebe	0	0	0	0	1 (1)	0	0	-			
Little grebe	1 (1)	0	1 (1)	0	1 (2)	0	2 (3)	10			
Grev heron	4 (8)	16 (8)	10 (12)	25 (11)	5 (10)	3 (9)	11 (12)	12			
Gannet	3 (2)	16 (3)	0	23 (6)	2 (2)	6 (6)	9 (3)	-			
Little earet	7 (8)	22 (9)	8 (10)	50 (12)	20 (8)	21 (10)	90 (9)	5			
Shaq	83 (12)	36 (9)	30 (11)	5 (8)	6 (8)	5 (9)	6 (14)	-			
Cormorant	12 (9)	21 (7)	16 (11)	26 (12)	16 (10)	11 (10)	37 (14)	55			
Ovstercatcher	2.790 (12)	1.240 (9)	3.677 (12)	1.033 (12)	2386 (12)	1195 (9)	2497 (14)	305			
Lapwing	4 (1)	53 (2)	41 (2)	9(1)	23 (1)	0	24 (4)	425			
Golden plover	475 (3)	140 (2)	125 (3)	0	375 (2)	0	140 (5)	460			
Grev plover	10 (4)	15 (2)	45 (8)	0	38 (4)	0	13 (5)	15			
Ringed plover	124 (9)	99 (4)	398 (12)	127 (4)	84 (7)	69 (5)	77 (14)	60			
Ruff	0	6 (1)	0	0	0	1 (1)	3 (1)				
Whimbrel	4 (3)	6 (2)	2 (1)	2 (2)	1 (1)	4 (2)	0	-			
Curlew	237 (12)	189 (8)	138 (11)	81 (10)	182 (9)	116 (8)	191 (11)	175			
Bar-tailed godwit	1.260 (11)	92 (7)	691 (12)	1.164 (6)	1103 (8)	116 (6)	398 (13)	85			
Black-tailed godwit	366 (11)	533 (5)	550 (12)	589 (7)	830 (8)	174 (3)	198 (11)	100			
Common sandpiper	0	2 (1)	0	2 (2)	1 (1)	0	0				
Turnstone	248 (12)	222 (8)	169 (11)	262 (9)	117 (10)	45 (9)	310 (14)	47			
Curlew sandpiper		7 (1)	0	0	0	0	3 (2)	-			
Knot	583 (7)	158 (2)	8.590 (11)	82 (1)	10890 (4)	0	6600 (11)	80			
Sanderling	408 (10)	144 (4)	241 (10)	57 (1)	156 (8)	39 (3)	293 (11)	42			
Dunlin	1.529 (12)	730 (5)	5.495 (12)	422 (5)	2363 (9)	208 (1)	3081 (13)	230			
Purple sandpiper	6 (7)		4 (5)	(3)	2 (1)	(1)	3 (3)				
Little stint	0	0	1 (1)	0	- (1)	0	0	-			
Snipe	2 (1)	3 (1)	2 (1)	0	0	0	2 (1)	-			
Redshank	709 (12)	407 (8)	463 (12)	367 (7)	1337 (11)	58 (5)	462 (13)	120			
Greenshank	12 (9)	10 (3)	9 (8)	21 (2)	9 (9)	5 (1)	109 (7)	10			
Lesser vellowleas	(0)	1 (2)	0	(=)	0	0	0	-			
Kittiwake	34 (1)	. (2)	6(1)	7 (4)	11 (3)	3(1)	5 (2)	-			

Table 4.2: Bird species recorded during site-specific intertidal landfall surveys of the OECC intertidal landfall location in South Dublin Bay

			Peak	count (Number of surve	eys)			
Species	Non-breeding 2019/20	Breeding 2020	Non-breeding 2020/21	Breeding 2021	Non-breeding 2021/22	Breeding 2022	Non-breeding 2022/23	0.5% of the national population of wintering
	Oct 19 to Mar 20 May 20 to Sep 20		Oct 19 to Mar 20	Apr 21 to Sep 21	Oct 21 to Mar 22	April to Sep 22	Oct 22 to Mar 23	waterbirds in Ireland (Burke <i>et al.</i> , 2018)
	(12 surveys)	(9 surveys)	(12 surveys)	(12 surveys)	(12 surveys)	(10 surveys)	(14 surveys)	
Black-headed gull	3,192 (12)	1,671 (9)	1,418 (12)	3,826 (11)	1044 (12)	2128 (10)	2040 (14)	-
Little gull	2 (1)	0	2 (1)	0	0	0	0	-
Mediterranean gull	54 (11)	87 (8)	6 (8)	67 (7)	4 (4)	52 (7)	41 (10)	-
Common gull	220 (12)	77 (7)	133 (12)	58 (12)	142 (11)	65 (10)	512 (14)	-
Great black-backed gull	241 (12)	227 (9)	130 (11)	99 (12)	87 (10)	74 (9)	113 (13)	-
Herring gull	5,646 (12)	2,058 (9)	1,323 (11)	940 (12)	341 (11)	562 (10)	836 (14)	-
Yellow-legged gull	0	1 (1)	1 (1)	1 (1)	0	0	0	-
Lesser black-backed gull	48 (8)	150 (8)	24 (7)	81 (11)	11 (8)	93 (10)	16 (9)	-
Sandwich tern	13 (1)	168 (7)	0	231 (9)	0	174 (8)	53 (3)	-
Common tern	0	35 (3)	0	45 (8)	0	35 (8)	0	-
Arctic tern	0	16 (1)	0	3 (2)	0	19 (5)	1 (1)	-
Common or Arctic tern	0	490 (5)	0	120 (4)	0	120 (6)	0	-
Roseate tern	0	0	0	1 (1)	0	1 (2)	0	-
Arctic skua	0	0	0	0	0	0	1 (1)	
Guillemot	9 (2)	4 (1)	27 (4)	5 (9)	14 (9)	5 (5)	15 (7)	-
Razorbill	0	4 (1)	3 (2)	32 (4)	4 (4)	5 (2)	28 (6)	-
Black guillemot	14 (10)	18 (7)	32 (8)	10 (10)	8 (9)	7 (9)	10 (9)	-
Fulmar	0	0	0	0	1 (1)	0	0	-
Kingfisher	1 (1)	1 (1)	1 (1)	0	1 (1)	1 (1)	0	-
Hooded crow	53 (6)	0	0	0	0	0	0	-
Starling	129 (3)	0	0	0	0	0	0	-

Source: Natural Power

Bird species shown in **Table 4.2** were recorded within the area of the OECC intertidal landfall in South Dublin Bay during intertidal landfall surveys to record the number and distribution of terns within roosting aggregations during post-breeding periods between July and September in 2020 and 2021.

One species, black tern, was only recorded once within the study area, with numbers considered to be too low to warrant detailed species accounts (this species is shown in grey cells in italic font within the table).

Common, Arctic and roseate terns are three species of similar appearance belonging to the genus *Sterna*, which can be difficult to accurately distinguish under low the light levels of the crepuscular periods during which roosting tern counts were undertaken. Differentiation of these species was therefore not generally possible. Consequently, these species are treated here collectively as *Sterna* species.

Those species highlighted in bold in Table 4.2 form the basis of detailed accounts for this baseline technical report.

Table 4.2:	Tern species	recorded	during	site-specific	intertidal	landfall	surveys	of the	Project	landfall	location	in
	South Dub	olin Bay										

	Peak count (number of surveys)							
Species	Post-breeding 2020	Post-breeding 2021						
	Jul 20 to Sep 20 (4 surveys)	Jul 21 to Sep 21 (4 surveys)						
Sandwich tern	307 (4)	462 (2)						
Sterna tern species	1,756 (4)	4,868 (4)						
Black tern	0	4 (1)						

Source: Natural Power

5. Species accounts

5.1. Offshore ornithology

The below species accounts present abundance and density estimates within the array site and appropriate buffers, with records apportioned to species level and corrected to incorporate availability bias (where applicable).

Treated counts of each species for each survey, in each area and for each behaviour (on sea or in flight) are presented in Table 5.1 to Table 5.62. Treated counts incorporate records not apportioned to species level during survey and subsequently apportioned to species level based on seasonal species observed ratios as described in section 2.4.1.3 Apportioning of species identified to higher taxonomic level. For diving bird species, treated counts for digital aerial surveys also incorporate availability bias correction factors (as described in section 2.4.1.5 Availability bias) to account for birds which may have been submerged at the time survey images were captured.

Abundance and density estimates of birds in flight and on the sea are presented for all species for the array site and the array site plus a 2 km buffer area. For diver species, considered highly sensitive to disturbance and displacement effects, abundance and density estimates are considered at the widest spatial scale at which data was collected, with information relating to the array site plus a 4 km buffer also presented.

Mean monthly flight densities (and standard deviation) within the array site are summarised for each species, as these values are key input parameters to Collision Risk Modelling, where quantification of collision mortality is determined to be required in impact assessment.

Mean peak bio-seasonal abundances within the array site and the array site plus a 2 km buffer are summarised. Where quantification of displacement mortality is determined to be required in impact assessment, mean peak bio-seasonal abundances within the array area plus a 2 km buffer (or 4 km buffer for diver species) are key input parameters to displacement modelling approaches.

5.1.1. Kittiwake

5.1.1.1. Survey data

Treated counts of kittiwake in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.1.

	Al	l behavio	urs		Flying		Sitting			
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	
				array site	;					
May 20	54.000	2.703	338.147	32.000	1.601	200.383	22.000	1.101	137.764	
Jun 20	14.000	0.701	87.668	14.000	0.701	87.668	0.000	0.000	0.000	
Jul 20	18.611	0.931	116.544	18.611	0.931	116.544	0.000	0.000	0.000	
Aug 20	20.567	1.029	128.792	17.567	0.879	110.006	3.000	0.150	18.786	
Sep 20	0.119	0.006	0.745	0.000	0.000	0.000	0.119	0.006	0.745	
Oct 20	15.000	0.751	93.930	14.000	0.701	87.668	1.000	0.050	6.262	
Nov 20	56.988	2.852	356.860	46.000	2.302	288.051	10.988	0.550	68.809	
Dec 20	102.357	5.123	640.957	98.000	4.905	613.674	4.357	0.218	27.283	

 Table 5.1: Kittiwake treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey
	AI	ll behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
Feb 21	4.000	0.200	25.048	4.000	0.200	25.048	0.000	0.000	0.000
March 21 (1)	12.848	0.643	80.455	11.000	0.551	68.882	1.848	0.092	11.573
March 21 (2)	30.119	1.507	188.604	20.000	1.001	125.240	10.119	0.506	63.365
April 21	35.000	1.752	219.169	14.000	0.701	87.668	21.000	1.051	131.502
May 21	25.685	1.285	160.839	24.000	1.201	150.288	1.685	0.084	10.551
Jun 21	21.000	1.051	131.502	13.000	0.651	81.406	8.000	0.400	50.096
Jul 21	16.041	0.803	100.451	15.000	0.751	93.930	1.041	0.052	6.522
Aug 21	83.784	4.193	524.651	26.784	1.340	167.719	57.000	2.853	356.933
Sep 21	8.908	0.446	55.779	8.908	0.446	55.779	0.000	0.000	0.000
Oct 21	25.000	1.251	156.550	23.000	1.151	144.026	2.000	0.100	12.524
Nov 21	55.720	2.789	348.915	34.887	1.746	218.461	20.833	1.043	130.454
Dec 21	54.891	2.747	343.728	52.772	2.641	330.460	2.119	0.106	13.269
Jan 22	25.000	1.251	156.550	22.000	1.101	137.764	3.000	0.150	18.786
Feb 22	31.000	1.551	194.121	28.000	1.401	175.335	3.000	0.150	18.786
Mar 22	16.000	0.801	100.192	15.000	0.751	93.930	1.000	0.050	6.262
Apr 22	21.000	1.051	131.502	9.000	0.450	56.358	12.000	0.601	75.144
			array s	site + 2 kn	n buffer				
May 20	109.021	2.766	635.206	69.000	1.751	402.026	40.021	1.016	233.179
Jun 20	40.989	1.040	238.818	33.000	0.837	192.273	7.989	0.203	46.545
Jul 20	42.632	1.082	248.395	41.611	1.056	242.447	1.021	0.026	5.947
Aug 20	75.567	1.917	440.290	34.567	0.877	201.405	41.000	1.040	238.885
Sep 20	1.119	0.028	6.520	0.000	0.000	0.000	1.119	0.028	6.520
Oct 20	36.848	0.935	214.695	35.000	0.888	203.926	1.848	0.047	10.768
Nov 20	243.107	6.169	1416.457	169.000	4.288	984.673	74.107	1.880	431.784
Dec 20	282.714	7.174	1647.222	186.000	4.720	1083.723	96.714	2.454	563.499
Feb 21	15.000	0.381	87.397	11.000	0.279	64.091	4.000	0.101	23.306
March 21 (1)	38.848	0.986	226.348	31.000	0.787	180.620	7.848	0.199	45.727
March 21 (2)	101.782	2.583	593.027	63.814	1.619	371.813	37.967	0.963	221.214
April 21	124.000	3.146	722.482	80.000	2.030	466.117	44.000	1.116	256.365
May 21	77.384	1.964	450.873	59.628	1.513	347.421	17.755	0.451	103.451
Jun 21	29.000	0.736	168.968	20.000	0.507	116.529	9.000	0.228	52.438
Jul 21	33.041	0.838	192.515	30.000	0.761	174.794	3.041	0.077	17.721
Aug 21	125.784	3.192	732.874	49.784	1.263	290.063	76.000	1.928	442.812
Sep 21	19.908	0.505	115.991	18.908	0.480	110.164	1.000	0.025	5.826
Oct 21	109.000	2.766	635.085	101.000	2.563	588.473	8.000	0.203	46.612
Nov 21	101.727	2.581	592.710	77.549	1.968	451.838	24.178	0.614	140.872
Dec 21	185.137	4.698	1078.696	176.587	4.481	1028.878	8.550	0.217	49.818
Jan 22	77.000	1.954	448.638	71.000	1.802	413.679	6.000	0.152	34.959
Feb 22	60.000	1.522	349.588	53.000	1.345	308.803	7.000	0.178	40.785
Mar 22	46.000	1.167	268.017	35.000	0.888	203.926	11.000	0.279	64.091
Apr 22	43.994	1.116	256.331	21.000	0.533	122.356	22.994	0.583	133.975

Treated counts of kittiwake (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.2.

 Table 5.2: Kittiwake treated counts and estimated densities and abundances within the array site and array site plus a 2 km buffer for each boat-based ESAS survey.

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
						а	rray site	e							
Count	19	5	7	29	217	10	8	61	3	6	8	7	216	25	8
Abundance	99	26	36	151	1132	53	41	318	16	31	41	36	1127	130	41
Density	0.79	0.21	0.29	1.21	9.05	0.42	0.33	2.54	0.13	0.25	0.33	0.29	9.01	1.04	0.33
					a	irray sit	e + 2 kr	n buffer							
Count	38	11	182	88	615	14	21	82	8	20	16	14	4630	187	559
Abundance	184	53	884	427	2985	69	101	397	39	96	78	69	22480	907	2714
Density	0.8	0.23	3.85	1.86	13	0.3	0.44	1.73	0.17	0.42	0.34	0.3	97.9	3.95	11.82

Source: Natural Power

5.1.1.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of kittiwake within the array site for each month, calculated for DAS data, are presented in Table 5.3.

Table 5.3: Kittiwake monthly estimated flight densities within array site from DAS data

Density						Мо	nth					
(ind/km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	1.101	0.801	0.767	0.576	1.401	0.676	0.841	1.110	0.223	0.926	2.024	3.773
S.D.	-	0.849	0.226	0.177	0.283	0.035	0.128	0.326	0.315	0.318	0.393	1.601

5.1.1.3. Biological season mean peak abundance estimates

Bio-seasonal mean peak abundance estimates of kittiwake within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.4.

Table 5.4: Kittiwake bio-seasonal mean peak abundances (individuals) in array site and array site plus a 2 kmbuffer from DAS data and boat-based ESAS survey data

		Survey	y type	
Bio-season	L	DAS	Boat-ba	ased ESAS
-	Array	Array + 2 km	Array	Array + 2 km
RM (Jan – Apr)	206.645	543.039	1,129.5	12,732.5
MFBS (May – Jul)	249.493	1362.959	91.5	504
PBM (Aug – Dec)	582.804	585.560	208.5	155.5

5.1.2. Common gull

5.1.2.1. Survey data

Treated counts of common gull in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.5.

 Table 5.5: Common gull treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	А	ll behavio	urs		Flying			Sitting	
Survey	Treated	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	9				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.004	0.000	0.023	0.004	0.000	0.023	0.000	0.000	0.000
Aug 20	0.010	0.000	0.060	0.010	0.000	0.060	0.000	0.000	0.000
Sep 20	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.003
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	2.003	0.100	12.546	2.000	0.100	12.524	0.003	0.000	0.022
Dec 20	1.001	0.050	6.270	1.000	0.050	6.262	0.001	0.000	0.008
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	2.003	0.100	12.543	2.000	0.100	12.524	0.003	0.000	0.019
March 21 (2)	2.000	0.100	12.527	2.000	0.100	12.524	0.000	0.000	0.003
April 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May 21	0.002	0.000	0.012	0.000	0.000	0.000	0.002	0.000	0.012
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001
Aug 21	0.005	0.000	0.030	0.005	0.000	0.030	0.000	0.000	0.000
Sep 21	0.044	0.002	0.277	0.044	0.002	0.277	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	1.046	0.052	6.550	1.043	0.052	6.532	0.003	0.000	0.018
Dec 21	3.135	0.157	19.633	3.135	0.157	19.631	0.000	0.000	0.003
Jan 22	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
Feb 22	6.000	0.300	37.572	6.000	0.300	37.572	0.000	0.000	0.000
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262
			array	site + 2 kn	n buffer				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.006	0.000	0.033	0.000	0.000	0.000	0.006	0.000	0.033
Jul 20	0.004	0.000	0.022	0.004	0.000	0.022	0.000	0.000	0.000
Aug 20	0.010	0.000	0.056	0.010	0.000	0.056	0.000	0.000	0.000
Sep 20	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.002
Oct 20	1.003	0.025	5.844	1.000	0.025	5.826	0.003	0.000	0.017
Nov 20	3.004	0.076	17.502	3.000	0.076	17.479	0.004	0.000	0.023
Dec 20	4.003	0.102	23.320	4.000	0.101	23.306	0.003	0.000	0.015
Feb 21	2.000	0.051	11.653	2.000	0.051	11.653	0.000	0.000	0.000

	AI	l behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
March 21 (1)	4.003	0.102	23.323	4.000	0.101	23.306	0.003	0.000	0.017
March 21 (2)	3.092	0.078	18.014	3.088	0.078	17.994	0.003	0.000	0.020
April 21	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000
May 21	0.035	0.001	0.205	0.010	0.000	0.058	0.025	0.001	0.147
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001
Aug 21	0.005	0.000	0.028	0.005	0.000	0.028	0.000	0.000	0.000
Sep 21	0.044	0.001	0.257	0.044	0.001	0.257	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	1.083	0.027	6.310	1.075	0.027	6.266	0.008	0.000	0.045
Dec 21	14.232	0.361	82.923	14.223	0.361	82.871	0.009	0.000	0.052
Jan 22	6.000	0.152	34.959	6.000	0.152	34.959	0.000	0.000	0.000
Feb 22	10.000	0.254	58.265	9.000	0.228	52.438	1.000	0.025	5.826
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	3.003	0.076	17.496	2.000	0.051	11.653	1.003	0.025	5.843

Treated counts of common gull (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boatbased ESAS survey data, are presented in Table 5.6.

 Table 5.6: Common gull treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
						а	rray sit	e							
Count	1	0	1	2	0	0	0	0	0	0	1	1	11	0	0
Abundance	5	0	5	10	0	0	0	0	0	0	5	5	58	0	0
Density	0.04	0	0.04	0.08	0	0	0	0	0	0	0.04	0.04	0.46	0	0
	-				а	array sit	:e + 2 kr	n buffei							
Count	2	0	3	5	1	0	0	0	0	0	2	4	13	0	0
Abundance	9	0	14	25	5	0	0	0	0	0	9	18	62	0	0
Density	0.04	0	0.06	0.11	0.02	0	0	0	0	0	0.04	0.08	0.27	0	0

Source: Natural Power

5.1.2.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of common gull within the array site for each month, calculated for DAS data, are presented in Table 5.7.

Table 5.7: Common gull monthly estimated flight densities within array site from DAS data

Density						Мо	nth					
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	0.050	0.150	0.067	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.076	0.103
S.D.	-	0.212	0.058	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.034	0.076

Source: Natural Power

5.1.2.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of common gull within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.8.

Table 5.8: Common gull bio-seasonal mean peak abundances (individuals) in array site and the array site plus a2 km buffer from DAS data and boat-based ESAS survey data

		Survey	/ type	
Bio-season	Digit	al aerial	Boat-b	ased ESAS
	Array	Array + 2 km	Array	Array + 2 km
RM (Jan – Apr)	25.057	40.794	34	43.5
MFBS (May – Jul)	0.018	0.119	0	0
PBM (Aug – Dec)	16.089	53.122	5	13.5

5.1.3. Black-headed gull

5.1.3.1. Survey data

Treated counts of black-headed gull in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.9.

Table 5.9: Black-headed gull treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	Α	ll behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	e				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.001	0.000	0.005	0.001	0.000	0.005	0.000	0.000	0.000
Aug 20	0.002	0.000	0.012	0.002	0.000	0.012	0.000	0.000	0.000
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
April 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 21	0.001	0.000	0.006	0.001	0.000	0.006	0.000	0.000	0.000
Sep 21	0.011	0.001	0.069	0.011	0.001	0.069	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.011	0.001	0.068	0.011	0.001	0.068	0.000	0.000	0.000
Dec 21	1.034	0.052	6.473	1.034	0.052	6.473	0.000	0.000	0.000
Jan 22	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	3.000	0.150	18.786	3.000	0.150	18.786	0.000	0.000	0.000
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			arrays	site + 2 kn	n buffer				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.001	0.000	0.004	0.001	0.000	0.004	0.000	0.000	0.000
Aug 20	0.002	0.000	0.011	0.002	0.000	0.011	0.000	0.000	0.000
Sep 20	2.000	0.051	11.653	2.000	0.051	11.653	0.000	0.000	0.000
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	Α	II behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (2)	0.022	0.001	0.129	0.022	0.001	0.129	0.000	0.000	0.000
April 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May 21	0.002	0.000	0.012	0.002	0.000	0.012	0.000	0.000	0.000
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 21	0.001	0.000	0.006	0.001	0.000	0.006	0.000	0.000	0.000
Sep 21	0.011	0.000	0.064	0.011	0.000	0.064	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.019	0.000	0.110	0.019	0.000	0.110	0.000	0.000	0.000
Dec 21	2.056	0.052	11.978	2.056	0.052	11.978	0.000	0.000	0.000
Jan 22	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	3.000	0.076	17.479	3.000	0.076	17.479	0.000	0.000	0.000
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Treated counts of black-headed gull (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boatbased ESAS survey data, are presented in Table 5.10.

 Table 5.10: Black-headed gull treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
						а	rray sit	e							
Count	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Abundance	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0
Density	0	0	0	0	0	0	0	0	0	0	0	0	0.04	0	0
					ä	array sit	te + 2 kr	n buffei	•						
Count	16	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Abundance	78	0	0	0	0	0	0	0	0	0	0	0	5	0	0
Density	0.34	0	0	0	0	0	0	0	0	0	0	0	0.02	0	0

Source: Natural Power

5.1.3.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of black-headed gull within the array site for each month, calculated for DAS data, are presented in Table 5.11.

Table 5.11: Common gull monthly estimated flight densities within array site from DAS data

Density	Month											
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	0.050	0.000	0.050	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.026
S.D.	-	0.000	0.087	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.037

Source: Natural Power

5.1.3.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of black-headed gull within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.12.

Table 5.12: Black-headed gull bio-seasonal mean peak abundances (individuals) in array site and the array siteplus a 2 km buffer from DAS data and boat-based ESAS survey data

	Survey type									
Bio-season	Digit	al aerial	Boat-based ESAS							
	Array	Array + 2 km	Array	Array + 2 km						
RM (Jan – Apr)	9.393	8.804	2.5	2.5						
MFBS (May – Jul)	0.002	0.008	0	0						
PBM (Aug – Dec)	6.485	11.815	0	39						

5.1.4. Little gull

5.1.4.1. Survey data

Treated counts of little gull in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.13.

 Table 5.13: Little gull treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	All behaviours				Flying		Sitting			
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	
				array site	;					
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jul 20	0.001	0.000	0.009	0.001	0.000	0.009	0.000	0.000	0.000	
Aug 20	0.004	0.000	0.024	0.004	0.000	0.024	0.000	0.000	0.000	
Sep 20	0.001	0.000	0.006	0.000	0.000	0.000	0.001	0.000	0.006	
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Nov 20	1.008	0.050	6.313	1.000	0.050	6.262	0.008	0.000	0.051	
Dec 20	0.003	0.000	0.018	0.000	0.000	0.000	0.003	0.000	0.018	
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
March 21 (1)	0.007	0.000	0.043	0.000	0.000	0.000	0.007	0.000	0.043	
March 21 (2)	0.001	0.000	0.006	0.000	0.000	0.000	0.001	0.000	0.006	
April 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
May 21	0.002	0.000	0.012	0.000	0.000	0.000	0.002	0.000	0.012	
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jul 21	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001	
Aug 21	0.002	0.000	0.012	0.002	0.000	0.012	0.000	0.000	0.000	
Sep 21	0.019	0.001	0.121	0.019	0.001	0.121	0.000	0.000	0.000	
Oct 21	4.000	0.200	25.048	1.000	0.050	6.262	3.000	0.150	18.786	
Nov 21	4.026	0.201	25.209	4.019	0.201	25.166	0.007	0.000	0.043	
Dec 21	12.060	0.604	75.519	12.059	0.604	75.513	0.001	0.000	0.006	
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			array	site + 2 kn	n buffer					
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jun 20	0.006	0.000	0.033	0.000	0.000	0.000	0.006	0.000	0.033	
Jul 20	0.002	0.000	0.009	0.001	0.000	0.009	0.000	0.000	0.000	
Aug 20	0.004	0.000	0.022	0.004	0.000	0.022	0.000	0.000	0.000	
Sep 20	5.001	0.127	29.138	5.000	0.127	29.132	0.001	0.000	0.006	
Oct 20	0.007	0.000	0.040	0.000	0.000	0.000	0.007	0.000	0.040	
Nov 20	2.009	0.051	11.706	2.000	0.051	11.653	0.009	0.000	0.053	
Dec 20	0.006	0.000	0.034	0.000	0.000	0.000	0.006	0.000	0.034	
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

	A	II behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
March 21 (1)	0.007	0.000	0.040	0.000	0.000	0.000	0.007	0.000	0.040
March 21 (2)	0.047	0.001	0.271	0.039	0.001	0.225	0.008	0.000	0.046
April 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May 21	0.029	0.001	0.170	0.004	0.000	0.023	0.025	0.001	0.147
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001
Aug 21	0.002	0.000	0.011	0.002	0.000	0.011	0.000	0.000	0.000
Sep 21	0.019	0.000	0.113	0.019	0.000	0.113	0.000	0.000	0.000
Oct 21	4.000	0.101	23.306	1.000	0.025	5.826	3.000	0.076	17.479
Nov 21	4.051	0.103	23.602	4.033	0.102	23.498	0.018	0.000	0.104
Dec 21	18.119	0.460	105.567	17.098	0.434	99.619	1.021	0.026	5.948
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826
Apr 22	0.003	0.000	0.017	0.000	0.000	0.000	0.003	0.000	0.017

Treated counts of little gull (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.14.

Table 5.14: Little gull treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
						а	rray sit	e							
Count	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abundance	53	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Density	0.42	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-				а	rray sit	te + 2 kr	n buffe	r						
Count	20	0	0	0	1	0	0	0	0	0	3	0	7	0	0
Abundance	96	0	0	0	5	0	0	0	0	0	14	0	34	0	0
Density	0.42	0	0	0	0.02	0	0	0	0	0	0.06	0	0.15	0	0

Source: Natural Power

5.1.4.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of little gull within the array site for each month, calculated for DAS data, are presented in Table 5.15.

Table 5.15: Little gull monthly estimated flight densities within array site from DAS data

Density	Month											
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.025	0.126	0.302
S.D.	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.035	0.107	0.427

Source: Natural Power

5.1.4.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of little gull within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.16.

Table 5.16: Little gull bio-seasonal mean peak abundances (individuals) in array site and the array site plus a 2km buffer from DAS data and boat-based ESAS survey data

	Survey type									
Bio-season	Digit	al aerial	Boat-based ESAS							
-	Array	Array + 2 km	Array	Array + 2 km						
RM (Mar – Apr)	0.022	3.049	0	5						
MFBS (May – Sep)	0.072	14.654	0	0						
PBM (Oct – Dec)	40.916	58.636	26.5	55						
MFW (Jan – Feb)	0.000	0.000	0	17						

5.1.5. Great black-backed gull

5.1.5.1. Survey data

Treated counts of great black-backed gull in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.17.

 Table 5.17: Great black-backed gull treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	AI	ll behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	•				
May 20	2.111	0.106	13.220	1.111	0.056	6.958	1.000	0.050	6.262
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	5.373	0.269	33.644	0.000	0.000	0.000	5.373	0.269	33.644
March 21 (2)	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262
April 21	0.151	0.008	0.945	0.000	0.000	0.000	0.151	0.008	0.945
May 21	14.603	0.731	91.441	6.556	0.328	41.051	8.047	0.403	50.390
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.004	0.000	0.026	0.004	0.000	0.026	0.000	0.000	0.000
Dec 21	3.000	0.150	18.786	1.000	0.050	6.262	2.000	0.100	12.524
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			array	site + 2 kn	n buffer				
May 20	2.111	0.054	12.300	1.111	0.028	6.474	1.000	0.025	5.826
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	0.151	0.004	0.879	0.000	0.000	0.000	0.151	0.004	0.879
Sep 20	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000
Oct 20	4.373	0.111	25.477	0.000	0.000	0.000	4.373	0.111	25.477
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	3.000	0.076	17.479	1.000	0.025	5.826	2.000	0.051	11.653

	All behaviours				Flying		Sitting			
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
March 21 (1)	7.373	0.187	42.957	1.000	0.025	5.826	6.373	0.162	37.130	
March 21 (2)	2.050	0.052	11.946	0.004	0.000	0.024	2.046	0.052	11.923	
April 21	2.373	0.060	13.827	0.222	0.006	1.295	2.151	0.055	12.532	
May 21	20.594	0.523	119.991	9.683	0.246	56.418	10.911	0.277	63.573	
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Sep 21	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000	
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Nov 21	0.115	0.003	0.671	0.115	0.003	0.671	0.000	0.000	0.000	
Dec 21	4.050	0.103	23.599	2.004	0.051	11.677	2.046	0.052	11.923	
Jan 22	1.326	0.034	7.728	0.000	0.000	0.000	1.326	0.034	7.728	
Feb 22	3.000	0.076	17.479	0.000	0.000	0.000	3.000	0.076	17.479	
Mar 22	3.000	0.076	17.479	1.000	0.025	5.826	2.000	0.051	11.653	
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Treated counts of great black-backed gull (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.18.

 Table 5.18: Great black-backed gull treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
						aı	ray sit	е							
Count	0	0	2	8	1	2	0	0	1	0	2	1	1	2	0
Abundance	0	0	10	41	5	10	0	0	5	0	10	5	5	10	0
Density	0	0	0.08	0.33	0.04	0.08	0	0	0.04	0	0.08	0.04	0.04	0.08	0
					a	array site	e + 2 kr	n buffe	r						
Count	1	1	3	9	14	2	0	0	2	0	2	4	2	2	10
Abundance	5	5	14	44	69	9	0	0	9	0	9	18	9	9	48
Density	0.02	0.02	0.06	0.19	0.3	0.04	0	0	0.04	0	0.04	0.08	0.04	0.04	0.21

Source: Natural Power

5.1.5.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of great black-backed gull within the array site for each month, calculated for DAS data, are presented in Table 5.19.

Table 5.19: Great black-backed gull monthly estimated flight densities within array site from DAS data

Density	Month											
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	0.000	0.000	0.000	0.000	0.192	0.000	0.000	0.000	0.000	0.000	0.000	0.025
S.D.	-	0.000	0.000	0.000	0.193	0.000	0.000	0.000	0.000	0.000	0.000	0.035

Source: Natural Power

5.1.5.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of great black-backed gull within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.20.

 Table 5.20: Great black-backed gull bio-seasonal mean peak abundances (individuals) in array site and the array site plus a 2 km buffer from DAS data and boat-based ESAS survey data

	Survey type										
Bio-season	Digit	al aerial	Boat-b	ased ESAS							
_	Array	Array + 2 km	Array	Array + 2 km							
B (Apr – Aug)	52.330	66.909	10	58.5							
NB (Sep – Mar)	26.215	33.278	25.5	31							

5.1.6. Herring gull

5.1.6.1. Survey data

Treated counts of herring gull in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.21.

 Table 5.21: Herring gull treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	А	ll behavio	urs		Flying			Sitting	
Survey	Treated	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	÷				
May 20	5.833	0.292	36.528	0.833	0.042	5.218	5.000	0.250	31.310
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	3.000	0.150	18.786	0.000	0.000	0.000	3.000	0.150	18.786
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 21	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
March 21 (1)	20.714	1.037	129.709	1.000	0.050	6.262	19.714	0.987	123.447
March 21 (2)	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
April 21	1.843	0.092	11.539	0.000	0.000	0.000	1.843	0.092	11.539
May 21	39.429	1.973	246.902	34.167	1.710	213.951	5.262	0.263	32.951
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
Aug 21	6.000	0.300	37.572	6.000	0.300	37.572	0.000	0.000	0.000
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.031	0.002	0.192	0.031	0.002	0.192	0.000	0.000	0.000
Dec 21	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	3.000	0.150	18.786	3.000	0.150	18.786	0.000	0.000	0.000
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
			array	site + 2 kn	n buffer				
May 20	6.833	0.173	39.814	0.833	0.021	4.855	6.000	0.152	34.959
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	7.843	0.199	45.696	1.000	0.025	5.826	6.843	0.174	39.869
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 20	3.714	0.094	21.638	1.000	0.025	5.826	2.714	0.069	15.811
Nov 20	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826
Dec 20	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826
Feb 21	3.000	0.076	17.479	2.000	0.051	11.653	1.000	0.025	5.826

	All behaviours				Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
March 21 (1)	27.714	0.703	161.473	4.000	0.101	23.306	23.714	0.602	138.167
March 21 (2)	22.119	0.561	128.875	12.030	0.305	70.094	10.089	0.256	58.781
April 21	7.509	0.191	43.753	5.667	0.144	33.017	1.843	0.047	10.737
May 21	89.209	2.264	519.776	60.123	1.526	350.303	29.087	0.738	169.472
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000
Aug 21	17.000	0.431	99.050	9.000	0.228	52.438	8.000	0.203	46.612
Sep 21	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.858	0.022	4.998	0.858	0.022	4.998	0.000	0.000	0.000
Dec 21	1.119	0.028	6.519	1.030	0.026	6.002	0.089	0.002	0.517
Jan 22	2.625	0.067	15.294	2.000	0.051	11.653	0.625	0.016	3.642
Feb 22	10.000	0.254	58.265	6.000	0.152	34.959	4.000	0.101	23.306
Mar 22	4.000	0.101	23.306	4.000	0.101	23.306	0.000	0.000	0.000
Apr 22	2.000	0.051	11.653	2.000	0.051	11.653	0.000	0.000	0.000

Treated counts of herring gull (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.22.

Table 5.22: Herring gull treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
						а	rray site	•							
Count	9	2	4	8	2	0	3	13	0	0	2	2	9	11	0
Abundance	48	10	21	41	10	0	16	68	0	0	10	10	48	58	0
Density	0.38	0.08	0.17	0.33	0.08	0	0.13	0.54	0	0	0.08	0.08	0.38	0.46	0
	-				а	array sit	te + 2 kn	n buffer							
Count	20	17	20	13	8	2	7	14	0	0	4	3	53	64	6
Abundance	96	83	96	62	39	9	34	69	0	0	18	14	257	310	30
Density	0.42	0.36	0.42	0.27	0.17	0.04	0.15	0.3	0	0	0.08	0.06	1.12	1.35	0.13

Source: Natural Power

5.1.6.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of herring gull within the array site for each month, calculated for DAS data, are presented in Table 5.23.

Table 5.23: Herring gull monthly estimated flight densities within array site from DAS data

Density	Month												
(indiv / km)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Νον	Dec	
Mean	0.000	0.100	0.033	0.025	0.876	0.000	0.025	0.150	0.000	0.000	0.001	0.025	
S.D.	-	0.071	0.029	0.035	1.180	0.000	0.035	0.212	0.000	0.000	0.001	0.035	

Source: Natural Power

5.1.6.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of herring gull within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.24.

Table 5.24: Herring gull bio-seasonal mean peak abundances (individuals) in array site and the array site plus a2 km buffer from DAS data and boat-based ESAS survey data

	Survey type										
Bio-season	Digit	al aerial	Boat-b	ased ESAS							
_	Array	Array + 2 km	Array	Array + 2 km							
B (Apr – Aug)	141.715	282.736	63	189.5							
NB (Sep – Mar)	74.247	109.869	48	176.5							

5.1.7. Lesser black-backed gull

5.1.7.1. Survey data

Treated counts of lesser black-backed gull in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.25.

 Table 5.25: Lesser black-backed gull treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	All behaviours				Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	•				
May 20	0.056	0.003	0.348	0.056	0.003	0.348	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	0.056	0.003	0.348	0.000	0.000	0.000	0.056	0.003	0.348
March 21 (2)	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
April 21	1.006	0.050	6.301	1.000	0.050	6.262	0.006	0.000	0.039
May 21	1.280	0.064	8.014	1.278	0.064	8.001	0.002	0.000	0.012
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.002	0.000	0.014	0.002	0.000	0.014	0.000	0.000	0.000
Dec 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			array	site + 2 kn	n buffer				
May 20	0.056	0.001	0.324	0.056	0.001	0.324	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	0.006	0.000	0.037	0.000	0.000	0.000	0.006	0.000	0.037
Sep 20	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000
Oct 20	0.056	0.001	0.323	0.000	0.000	0.000	0.056	0.001	0.323
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	All behaviours				Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	0.056	0.001	0.323	0.000	0.000	0.000	0.056	0.001	0.323
March 21 (2)	2.009	0.051	11.706	1.002	0.025	5.840	1.007	0.026	5.867
April 21	2.117	0.054	12.337	2.111	0.054	12.300	0.006	0.000	0.037
May 21	1.379	0.035	8.037	1.342	0.034	7.816	0.038	0.001	0.221
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.064	0.002	0.373	0.064	0.002	0.373	0.000	0.000	0.000
Dec 21	0.009	0.000	0.053	0.002	0.000	0.013	0.007	0.000	0.040
Jan 22	0.049	0.001	0.283	0.000	0.000	0.000	0.049	0.001	0.283
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000

Treated counts of lesser black-backed gull (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.26.

 Table 5.26: Lesser black-backed gull treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
						а	rray site								
Count	0	0	0	0	0	1	1	0	0	0	0	0	0	2	0
Abundance	0	0	0	0	0	5	5	0	0	0	0	0	0	10	0
Density	0	0	0	0	0	0.04	0.04	0	0	0	0	0	0	0.08	0
					í	array sit	te + 2 km	n buffei							
Count	0	0	0	0	1	3	2	0	0	0	0	0	1	4	4
Abundance	0	0	0	0	5	14	9	0	0	0	0	0	5	18	18
Density	0	0	0	0	0.02	0.06	0.04	0	0	0	0	0	0.02	0.08	0.08

Source: Natural Power

5.1.7.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of lesser black-backed gull within the array site for each month, calculated for DAS data, are presented in Table 5.27.

Table 5.27: Lesser black-backed gull monthly estimated flight densities within array site from DAS data

Density	Month												
(indiv./ km)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Νον	Dec	
Mean	0.000	0.000	0.017	0.025	0.033	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
S.D.	-	0.000	0.029	0.035	0.043	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Source: Natural Power

5.1.7.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of lesser black-backed gull within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.28.

 Table 5.28: Lesser black-backed gull bio-seasonal mean peak abundances (individuals) in array site and the array site plus a 2 km buffer from DAS data and boat-based ESAS survey data

	Survey type										
Bio-season	Digit	al aerial	Boat-b	ased ESAS							
	Array	Array + 2 km	Array	Array + 2 km							
RM (Mar – Apr)	3.151	9.082	0	5							
MFBS (May – Jul)	4.181	4.181	7.5	16							
PBM (Aug – Oct)	0.000	2.913	0	9							
MFW (Nov – Feb)	0.007	0.187	0	2.5							

5.1.8. Roseate tern

5.1.8.1. Survey data

A single roseate tern was recorded in flight during DAS surveys within the 2 km buffer area of Project in August 2020 (Table 5.29), with an extrapolated abundance of n = 5.826. The flight density was calculated as being 0.025 individuals per km². No roseate terns were recorded within the array area during baseline DAS surveys.

No roseate terns were recorded within the array site during boat-based ESAS surveys. Treated counts of roseate tern (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site plus a 2 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.29.

 Table 5.29: Roseate tern treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
					ŧ	array sit	te + 2 kr	n buffer							
Count	0	0	0	0	0	0	0	0	0	0	0	0	0	5	4
Abundance	0	0	0	0	0	0	0	0	0	0	0	0	0	25	18
Density	0	0	0	0	0	0	0	0	0	0	0	0	0	0.11	0.08

Source: Natural Power

5.1.8.2. Monthly mean flight density estimates

No roseate terns were recorded in flight within the array site during digital aerial surveys.

5.1.8.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of roseate tern within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.30.

Table 5.30: Roseate tern bio-seasonal mean peak abundance (individuals) in array site and the array site plus a 2km buffer from DAS data and boat-based ESAS survey data

	Survey type										
Bio-season	Digit	tal aerial	Boat-b	ased ESAS							
	Array	Array + 2 km	Array	Array + 2 km							
RM (Apr – May)	0	0	0	0							
MFBS (Jun)	0	0	0	0							
PBM (Jul – Sep)	0	2.913	0	12.5							
MFW (Oct – Mar)	0	0	0	0							

5.1.9. **Common tern**

5.1.9.1. Survey data

Treated counts of common tern in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.31.

Table 5.31: Common tern treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	AI	l behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	•				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.684	0.034	4.281	0.684	0.034	4.281	0.000	0.000	0.000
Jul 20	1.684	0.084	10.543	1.684	0.084	10.543	0.000	0.000	0.000
Aug 20	23.847	1.193	149.330	20.316	1.017	127.216	3.532	0.177	22.114
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
April 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May 21	5.367	0.269	33.611	5.367	0.269	33.611	0.000	0.000	0.000
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	1.677	0.084	10.498	1.677	0.084	10.498	0.000	0.000	0.000
Aug 21	56.142	2.810	351.561	52.611	2.633	329.446	3.532	0.177	22.114
Sep 21	34.052	1.704	213.234	29.052	1.454	181.924	5.000	0.250	31.310
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			arrays	site + 2 kn	n buffer				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	1.367	0.035	7.967	1.367	0.035	7.967	0.000	0.000	0.000
Jul 20	2.367	0.060	13.794	2.367	0.060	13.794	0.000	0.000	0.000
Aug 20	108.427	2.751	631.745	99.951	2.536	582.362	8.476	0.215	49.383
Sep 20	11.417	0.290	66.521	10.417	0.264	60.695	1.000	0.025	5.826
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	A	l behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
April 21	2.684	0.068	15.637	2.684	0.068	15.637	0.000	0.000	0.000
May 21	30.910	0.784	180.094	30.910	0.784	180.094	0.000	0.000	0.000
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	4.044	0.103	23.562	4.044	0.103	23.562	0.000	0.000	0.000
Aug 21	121.878	3.093	710.118	78.794	1.999	459.088	43.084	1.093	251.029
Sep 21	40.052	1.016	233.362	35.052	0.889	204.230	5.000	0.127	29.132
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Treated counts of common tern (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boatbased ESAS survey data, are presented in Table 5.32.

 Table 5.32: Common tern treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
						a	irray si	te							
Count	0	0	0	0	1	0	0	4	0	0	0	0	0	0	2
Abundance	0	0	0	0	5	0	0	21	0	0	0	0	0	0	10
Density	0	0	0	0	0.04	0	0	0.17	0	0	0	0	0	0	0.08
					a	rray sit	te + 2 k	m buffer	•						
Count	0	0	0	0	3	0	0	12	34	2	0	0	0	19	60
Abundance	0	0	0	0	14	0	0	57	165	9	0	0	0	92	292
Density	0	0	0	0	0.06	0	0	0.25	0.72	0.04	0	0	0	0.4	1.27

Source: Natural Power

5.1.9.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of common tern within the array site for each month, calculated for DAS data, are presented in Table 5.33.

Table 5.33: Common tern monthly estimated flight densities within array site from DAS data

Density						Мо	nth					
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	0.000	0.000	0.000	0.000	0.134	0.017	0.084	1.825	0.727	0.000	0.000	0.000
S.D.	-	0.000	0.000	0.000	0.190	0.024	0.000	1.143	1.028	0.000	0.000	0.000

Source: Natural Power

5.1.9.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of common tern within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.34.

Table 5.34: Common tern bio-seasonal mean peak abundances (individuals) in array site and the array site plusa 2 km buffer from DAS data and boat-based ESAS survey data

		Survey	v type	
Bio-season	Digita	al aerial	Boat-b	ased ESAS
_	Array	Array + 2 km	Array	Array + 2 km
RM (Apr – May)	16.805	97.865	5	14
MFBS (Jun)	2.141	3.984	0	0
PBM (Jul – Sep)	250.445	670.931	15.5	228.5

5.1.10. Arctic tern

5.1.10.1. Survey data

Treated counts of Arctic tern in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.35.

Table 5.35:	Arctic tern	treated	counts	and	estimated	densities	and	abundances	within	the	array	site	and	array
	site plus	2 km bu	iffer for	each	h digital ae	rial surve	y							

	Α	ll behavio	urs		Flying			Sitting	
Survey	Treated	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	•				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.316	0.016	1.981	0.316	0.016	1.981	0.000	0.000	0.000
Jul 20	0.316	0.016	1.981	0.316	0.016	1.981	0.000	0.000	0.000
Aug 20	14.478	0.725	90.664	13.010	0.651	81.468	1.469	0.073	9.196
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
April 21	2.000	0.100	12.524	2.000	0.100	12.524	0.000	0.000	0.000
May 21	1.633	0.082	10.223	1.633	0.082	10.223	0.000	0.000	0.000
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	1.313	0.066	8.222	1.313	0.066	8.222	0.000	0.000	0.000
Aug 21	7.989	0.400	50.027	6.521	0.326	40.831	1.469	0.073	9.196
Sep 21	0.691	0.035	4.326	0.691	0.035	4.326	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			arrays	site + 2 kn	n buffer				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	1.633	0.041	9.512	1.633	0.041	9.512	0.000	0.000	0.000
Jul 20	0.633	0.016	3.686	0.633	0.016	3.686	0.000	0.000	0.000
Aug 20	57.509	1.459	335.072	53.984	1.370	314.537	3.524	0.089	20.535
Sep 20	2.401	0.061	13.990	2.401	0.061	13.990	0.000	0.000	0.000
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	AI	ll behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
March 21 (1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
April 21	3.316	0.084	19.322	3.316	0.084	19.322	0.000	0.000	0.000
May 21	19.285	0.489	112.362	19.285	0.489	112.362	0.000	0.000	0.000
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	4.946	0.125	28.815	4.946	0.125	28.815	0.000	0.000	0.000
Aug 21	31.222	0.792	181.911	13.306	0.338	77.526	17.916	0.455	104.385
Sep 21	0.691	0.018	4.025	0.691	0.018	4.025	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Treated counts of Artic tern (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.36.

Table 5.36: Arctic tern treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
						a	rray sit	е							
Count	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Abundance	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0
Density	0	0	0	0	0	0	0	0	0	0	0	0	0	0.04	0
					a	irray sit	te + 2 ki	n buffe	r						
Count	0	0	0	0	1	0	0	0	0	0	0	0	0	8	47
Abundance	0	0	0	0	5	0	0	0	0	0	0	0	0	39	227
Density	0	0	0	0	0.02	0	0	0	0	0	0	0	0	0.17	0.99

Source: Natural Power

5.1.10.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of Arctic tern within the array site for each month, calculated for DAS data, are presented in Table 5.37.

Table 5.37: Arctic tern monthly estimated flight densities within array site from DAS data

Density						Мо	nth					
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	0.000	0.000	0.000	0.050	0.041	0.008	0.041	0.489	0.017	0.000	0.000	0.000
S.D.	-	0.000	0.000	0.071	0.058	0.011	0.035	0.230	0.024	0.000	0.000	0.000

Source: Natural Power

5.1.10.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of Arctic tern within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.38.

Table 5.38: Arctic tern bio-seasonal mean peak abundances (individuals) in array site and the array site plus a 2km buffer from DAS data and boat-based ESAS survey data

		Survey	v type	
Bio-season	Digit	al aerial	Boat-b	ased ESAS
_	Array	Array + 2 km	Array	Array + 2 km
RM (Apr – May)	11.374	65.842	0	5
MFBS (Jun)	0.990	4.756	0	0
PBM (Jul – Sep)	70.345	258.492	2.5	113.5

5.1.11. Sandwich tern

5.1.11.1. Survey data

Treated counts of Sandwich tern in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.39.

 Table 5.39: Sandwich tern treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	A	ll behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	•				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	1.092	0.055	6.838	1.092	0.055	6.838	0.000	0.000	0.000
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
April 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.011	0.001	0.066	0.011	0.001	0.066	0.000	0.000	0.000
Aug 21	0.078	0.004	0.486	0.078	0.004	0.486	0.000	0.000	0.000
Sep 21	0.275	0.014	1.722	0.275	0.014	1.722	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			array	site + 2 kn	n buffer				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	1.482	0.038	8.635	1.482	0.038	8.635	0.000	0.000	0.000
Sep 20	1.182	0.030	6.886	1.182	0.030	6.886	0.000	0.000	0.000
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	Α	II behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
April 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May 21	0.014	0.000	0.084	0.014	0.000	0.084	0.000	0.000	0.000
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.011	0.000	0.061	0.011	0.000	0.061	0.000	0.000	0.000
Aug 21	0.109	0.003	0.636	0.109	0.003	0.636	0.000	0.000	0.000
Sep 21	1.275	0.032	7.429	1.275	0.032	7.429	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

No Sandwich tern were recorded within the array site or array site plus 2 km during boat-based ESAS surveys.

5.1.11.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of Sandwich tern within the array site for each month, calculated for DAS data, are presented in Table 5.40.

Table 5.40: Sandwich	tern monthly	estimated f	light densities	within an	ray site f	from DAS	data

Density						Мо	nth					
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.029	0.007	0.000	0.000	0.000
S.D.	-	0.000	0.000	0.000	0.000	0.000	0.000	0.036	0.010	0.000	0.000	0.000

Source: Natural Power

5.1.11.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of Sandwich tern within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.41.

Table 5.41:	Sandwich tern b	io-seasonal me	an peak abu	ndances (individuals)	in array	site and the ar	ray site plus
	a 2 km buffer f	rom DAS data a	and boat-bas	ed ESAS :	survey data			

		Survey	' type				
Bio-season	Digi	tal aerial	Boat-based ESAS				
_	Array	Array + 2 km	Array	Array + 2 km			
RM (Apr – May)	0.000	0.042	0	0			
MFBS (Jun)	0.000	0.000	0	0			

	PBM (Jul – Sep) 4.280 8.032 0 0	
--	---------------------------------	--

5.1.12. Guillemot

5.1.12.1. Survey data

Treated counts of guillemot in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.42.

 Table 5.42: Guillemot treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	A	ll behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	;				
May 20	121.818	6.097	762.822	2.452	0.123	15.357	119.366	5.974	747.466
Jun 20	138.523	6.933	867.431	4.000	0.200	25.048	134.523	6.732	842.383
Jul 20	28.550	1.429	178.779	3.328	0.167	20.840	25.222	1.262	157.938
Aug 20	432.774	21.659	2710.023	0.905	0.045	5.665	431.869	21.613	2704.357
Sep 20	112.686	5.640	705.638	1.000	0.050	6.262	111.686	5.589	699.376
Oct 20	62.369	3.121	390.550	7.000	0.350	43.834	55.369	2.771	346.717
Nov 20	28.680	1.435	179.592	5.000	0.250	31.310	23.680	1.185	148.282
Dec 20	113.471	5.679	710.554	9.879	0.494	61.860	103.592	5.184	648.694
Feb 21	24.039	1.203	150.533	1.000	0.050	6.262	23.039	1.153	144.271
March 21 (1)	43.359	2.170	271.516	24.000	1.201	150.288	19.359	0.969	121.229
March 21 (2)	42.194	2.112	264.216	10.551	0.528	66.073	31.642	1.584	198.143
April 21	213.212	10.670	1335.131	39.000	1.952	244.217	174.212	8.719	1090.914
May 21	112.969	5.654	707.412	24.000	1.201	150.288	88.969	4.453	557.125
Jun 21	8.000	0.400	50.096	0.000	0.000	0.000	8.000	0.400	50.096
Jul 21	91.411	4.575	572.416	0.452	0.023	2.833	90.959	4.552	569.584
Aug 21	2034.512	101.820	12740.077	0.000	0.000	0.000	2034.512	101.820	12740.077
Sep 21	312.112	15.620	1954.440	1.000	0.050	6.262	311.112	15.570	1948.178
Oct 21	21.916	1.097	137.235	0.776	0.039	4.858	21.140	1.058	132.378
Nov 21	34.844	1.744	218.195	1.000	0.050	6.262	33.844	1.694	211.933
Dec 21	113.794	5.695	712.576	3.551	0.178	22.239	110.242	5.517	690.336
Jan 22	74.680	3.737	467.643	45.000	2.252	281.789	29.680	1.485	185.854
Feb 22	53.680	2.686	336.141	43.000	2.152	269.265	10.680	0.534	66.876
Mar 22	14.655	0.733	91.772	3.000	0.150	18.786	11.655	0.583	72.986
Apr 22	23.000	1.151	144.026	4.000	0.200	25.048	19.000	0.951	118.978
			array s	ite + 2 kn	n buffer				
May 20	359.415	9.120	2094.122	9.357	0.237	54.519	350.058	8.883	2039.603
Jun 20	325.300	8.254	1895.352	11.452	0.291	66.727	313.848	7.964	1828.625
Jul 20	98.357	2.496	573.076	9.328	0.237	54.350	89.029	2.259	518.727
Aug 20	1007.283	25.559	5868.903	1.357	0.034	7.907	1005.926	25.525	5860.997
Sep 20	276.068	7.005	1608.500	4.551	0.115	26.519	271.516	6.890	1581.981
Oct 20	128.060	3.249	746.139	12.000	0.304	69.918	116.060	2.945	676.221

	A	All behaviours			Flying		Sitting			
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	
Nov 20	61.955	1.572	360.978	9.000	0.228	52.438	52.955	1.344	308.540	
Dec 20	225.434	5.720	1313.482	17.430	0.442	101.556	208.004	5.278	1211.926	
Feb 21	52.054	1.321	303.291	1.000	0.025	5.826	51.054	1.295	297.465	
March 21 (1)	126.612	3.213	737.701	47.000	1.193	273.844	79.612	2.020	463.857	
March 21 (2)	225.630	5.725	1314.626	58.551	1.486	341.148	167.079	4.240	973.478	
April 21	910.630	23.107	5305.754	151.904	3.854	885.062	758.726	19.252	4420.692	
May 21	333.277	8.457	1941.826	57.857	1.468	337.104	275.419	6.989	1604.722	
Jun 21	12.000	0.304	69.918	0.000	0.000	0.000	12.000	0.304	69.918	
Jul 21	260.956	6.622	1520.452	1.452	0.037	8.462	259.504	6.585	1511.990	
Aug 21	3571.877	90.634	20811.425	0.000	0.000	0.000	3571.877	90.634	20811.425	
Sep 21	807.424	20.488	4704.429	4.000	0.101	23.306	803.424	20.386	4681.123	
Oct 21	50.563	1.283	294.603	4.040	0.103	23.540	46.523	1.180	271.063	
Nov 21	77.274	1.961	450.232	2.220	0.056	12.933	75.054	1.904	437.299	
Dec 21	201.037	5.101	1171.334	6.551	0.166	38.172	194.485	4.935	1133.162	
Jan 22	201.036	5.101	1171.331	126.000	3.197	734.135	75.036	1.904	437.196	
Feb 22	107.357	2.724	625.509	60.000	1.522	349.588	47.357	1.202	275.921	
Mar 22	60.012	1.523	349.658	7.000	0.178	40.785	53.012	1.345	308.873	
Apr 22	74.611	1.893	434.718	16.000	0.406	93.223	58.611	1.487	341.494	

Treated counts of guillemot (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.43.

 Table 5.43: Guillemot treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
						а	rray sit	e							
Count	62	34	119	120	325	22	24	401	27	131	30	127	171	206	57
Abundance	325	178	621	624	1695	115	125	2091	141	682	156	663	892	1075	298
Density	2.6	1.42	4.96	4.99	13.55	0.92	1	16.71	1.13	5.45	1.25	5.3	7.13	8.59	2.38
					а	ırray sit	e + 2 ki	n buffer							
Count	134	114	345	259	1192	53	68	592	73	301	50	208	445	1193	536
Abundance	650	553	1674	1261	5786	257	331	2873	354	1460	243	1008	2161	5793	2602
Density	2.83	2.41	7.29	5.49	25.2	1.12	1.44	12.51	1.54	6.36	1.06	4.39	9.41	25.23	11.33

5.1.12.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of guillemot within the array site for each month, calculated for DAS data, are presented in Table 5.44.

Density						Мо	nth					
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	2.252	1.101	0.626	1.076	0.662	0.100	0.095	0.023	0.050	0.195	0.150	0.336
S.D.	-	1.486	0.532	1.239	0.763	0.142	0.102	0.032	0.000	0.220	0.142	0.224

Table 5.44: Guillemot monthly estimated flight densities within array site from DAS data

Source: Natural Power

5.1.12.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of guillemot within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.45.

Table 5.45: Guillemot bio-seasonal mean peak abundances (individuals) in array site and the array site plus a 2km buffer from DAS data and boat-based ESAS survey data

	Survey type									
Bio-season	Digita	al aerial	Boat-based ESAS							
_	Array	Array + 2 km	Array	Array + 2 km						
B (Mar – Jul)	1021.272	3623.790	1385	5789.5						
NB (Aug – Feb)	7725.050	13340.164	1491.5	2737.5						

5.1.13. Razorbill

5.1.13.1. Survey data

Treated counts of razorbill in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.46.

 Table 5.46: Razorbill treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	A	l behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	•				
May 20	34.484	1.726	215.941	2.048	0.103	12.826	32.436	1.623	203.115
Jun 20	8.267	0.414	51.765	1.000	0.050	6.262	7.267	0.364	45.503
Jul 20	0.813	0.041	5.092	0.035	0.002	0.219	0.778	0.039	4.873
Aug 20	139.471	6.980	873.367	0.096	0.005	0.603	139.375	6.975	872.764
Sep 20	16.093	0.805	100.772	1.000	0.050	6.262	15.093	0.755	94.510
Oct 20	2.587	0.129	16.201	0.000	0.000	0.000	2.587	0.129	16.201
Nov 20	8.320	0.416	52.101	2.000	0.100	12.524	6.320	0.316	39.577
Dec 20	17.112	0.856	107.157	6.121	0.306	38.332	10.991	0.550	68.825
Feb 21	6.961	0.348	43.589	1.000	0.050	6.262	5.961	0.298	37.327
March 21 (1)	46.641	2.334	292.062	26.000	1.301	162.811	20.641	1.033	129.251
March 21 (2)	29.636	1.483	185.579	2.449	0.123	15.333	27.187	1.361	170.246
April 21	33.158	1.659	207.632	9.000	0.450	56.358	24.158	1.209	151.275
May 21	2.959	0.148	18.528	0.000	0.000	0.000	2.959	0.148	18.528
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	35.971	1.800	225.248	0.048	0.002	0.302	35.923	1.798	224.946
Aug 21	672.525	33.657	4211.341	0.000	0.000	0.000	672.525	33.657	4211.341
Sep 21	173.717	8.694	1087.813	2.000	0.100	12.524	171.717	8.594	1075.289
Oct 21	21.002	1.051	131.514	1.224	0.061	7.666	19.778	0.990	123.848
Nov 21	4.283	0.214	26.818	0.000	0.000	0.000	4.283	0.214	26.818
Dec 21	109.986	5.504	688.733	0.449	0.022	2.809	109.538	5.482	685.924
Jan 22	7.320	0.366	45.839	0.000	0.000	0.000	7.320	0.366	45.839
Feb 22	16.320	0.817	102.197	16.000	0.801	100.192	0.320	0.016	2.006
Mar 22	2.309	0.116	14.458	0.000	0.000	0.000	2.309	0.116	14.458
Apr 22	4.000	0.200	25.048	0.000	0.000	0.000	4.000	0.200	25.048
			array s	site + 2 kn	n buffer				
May 20	62.444	1.584	363.827	4.145	0.105	24.148	58.299	1.479	339.679
Jun 20	24.775	0.629	144.350	1.048	0.027	6.107	23.727	0.602	138.243
Jul 20	3.974	0.101	23.157	2.035	0.052	11.856	1.940	0.049	11.300
Aug 20	341.626	8.669	1990.472	0.145	0.004	0.842	341.481	8.665	1989.630
Sep 20	76.587	1.943	446.229	2.449	0.062	14.266	74.138	1.881	431.963
Oct 20	17.855	0.453	104.034	14.000	0.355	81.571	3.855	0.098	22.464
Nov 20	18.921	0.480	110.243	12.000	0.304	69.918	6.921	0.176	40.325
Dec 20	54.765	1.390	319.084	7.570	0.192	44.106	47.195	1.198	274.979
Feb 21	9.910	0.251	57.741	1.000	0.025	5.826	8.910	0.226	51.915

	All behaviours				Flying		Sitting			
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	
March 21 (1)	91.356	2.318	532.284	41.000	1.040	238.885	50.356	1.278	293.398	
March 21 (2)	112.852	2.864	657.526	12.449	0.316	72.531	100.403	2.548	584.995	
April 21	122.557	3.110	714.074	17.096	0.434	99.611	105.461	2.676	614.463	
May 21	10.574	0.268	61.611	2.091	0.053	12.185	8.483	0.215	49.426	
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jul 21	109.001	2.766	635.090	0.048	0.001	0.281	108.953	2.765	634.809	
Aug 21	1155.039	29.308	6729.797	0.000	0.000	0.000	1155.039	29.308	6729.797	
Sep 21	496.192	12.591	2891.049	2.000	0.051	11.653	494.192	12.540	2879.396	
Oct 21	66.251	1.681	386.007	4.879	0.124	28.427	61.372	1.557	357.580	
Nov 21	11.743	0.298	68.421	2.064	0.052	12.023	9.680	0.246	56.398	
Dec 21	165.053	4.188	961.677	0.449	0.011	2.613	164.605	4.177	959.064	
Jan 22	8.959	0.227	52.202	0.000	0.000	0.000	8.959	0.227	52.202	
Feb 22	27.639	0.701	161.039	20.000	0.507	116.529	7.639	0.194	44.509	
Mar 22	8.948	0.227	52.135	2.000	0.051	11.653	6.948	0.176	40.482	
Apr 22	5.389	0.137	31.399	0.000	0.000	0.000	5.389	0.137	31.399	

Treated counts of razorbill (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.47.

Table 5.47: Razorbill treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
array site															
Count	21	13	11	56	39	5	2	362	7	36	15	13	9	48	44
Abundance	108	68	58	294	204	26	10	1891	36	190	79	68	48	250	230
Density	0.86	0.54	0.46	2.35	1.63	0.21	0.08	15.11	0.29	1.52	0.63	0.54	0.38	2	1.84
					а	array sit	te + 2 kr	n buffer							
Count	62	22	26	127	94	7	8	493	29	85	24	49	32	495	1282
Abundance	301	108	126	615	457	34	39	2395	142	416	117	239	156	2402	6225
Density	1.31	0.47	0.55	2.68	1.99	0.15	0.17	10.43	0.62	1.81	0.51	1.04	0.68	10.46	27.11

Source: Natural Power

5.1.13.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of razorbill within the array site for each month, calculated for DAS data, are presented in Table 5.48.

Table 5.48: Razorbill monthly estimated flight densities within array site from DAS data

Density	Month											
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	0.000	0.425	0.475	0.225	0.051	0.025	0.002	0.002	0.075	0.031	0.050	0.164
S.D.	-	0.531	0.718	0.318	0.072	0.035	0.000	0.003	0.035	0.043	0.071	0.201

Source: Natural Power

5.1.13.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of razorbill within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.49.

Table 5.49: Razorbill bio-seasonal mean peak abundances (individuals) in array site and the array site plus a 2km buffer from DAS data and boat-based ESAS survey data

	Survey type								
Bio-season	Digita	al aerial	Boat-based ESAS						
-	Array	Array + 2 km	Array	Array + 2 km					
RM (Jan – Mar)	197.130	409.282	171	385.5					
MFBS (Apr – Jul)	220.594	674.582	227	1429.5					
PBM (Aug – Oct)	2542.354	4360.134	1060.5	4310					
MFW (Nov – Dec)	397.945	640.381	68	239					

5.1.14. Black guillemot

5.1.14.1. Survey data

Treated counts of black guillemot in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.50.

 Table 5.50: Black guillemot treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	A	All behaviours			Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	•				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
April 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 21	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			array	site + 2 kr	n buffer				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 20	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Α	II behavio	urs		Flying			Sitting	
--------------	------------------	------------------------	-----------	------------------	------------------------	-----------	------------------	------------------------	-----------
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (2)	3.000	0.076	17.479	0.000	0.000	0.000	3.000	0.076	17.479
April 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 21	3.000	0.076	17.479	1.000	0.025	5.826	2.000	0.051	11.653
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 21	3.000	0.076	17.479	0.000	0.000	0.000	3.000	0.076	17.479
Jan 22	2.000	0.051	11.653	0.000	0.000	0.000	2.000	0.051	11.653
Feb 22	3.000	0.076	17.479	2.000	0.051	11.653	1.000	0.025	5.826
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000

Treated counts of black guillemot (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boatbased ESAS survey data, are presented in Table 5.51.

 Table 5.51: Black guillemot treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
						а	rray sit	e							
Count	4	0	1	1	2	0	0	0	0	0	7	0	0	0	0
Abundance	21	0	5	5	10	0	0	0	0	0	36	0	0	0	0
Density	0.17	0	0.04	0.04	0.08	0	0	0	0	0	0.29	0	0	0	0
					а	rray sit	e + 2 k	m buffer							
Count	6	0	1	1	2	0	0	1	0	1	12	0	0	0	0
Abundance	30	0	5	5	9	0	0	5	0	5	57	0	0	0	0
Density	0.13	0	0.02	0.02	0.04	0	0	0.02	0	0.02	0.25	0	0	0	0

Source: Natural Power

5.1.14.2. Monthly mean flight density estimates

No black guillemot were recorded in flight within the array site during digital aerial surveys.

5.1.14.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of black guillemot within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.52.

 Table 5.52: Black guillemot bio-seasonal mean peak abundances (individuals) and density in array site and the array site plus a 2 km buffer from DAS data and boat-based ESAS survey data

		Survey	' type	
Bio-season	Digit	al aerial	Boat-b	ased ESAS
	Array	Array + 2 km	Array	Array + 2 km
B (Apr – Aug)	0.000	2.913	5	5
NB (Sep – Mar)	3.131	17.479	29	44

5.1.15. **Puffin**

5.1.15.1. Survey data

Treated counts of puffin in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.53.

Table 5.53: Puffir	treated counts	and estimated	densities and	abundances	within the	e array site	and a	array s	site
plus	s 2 km buffer for	each digital a	erial survey			-		-	

	Α	ll behavio	urs		Flying			Sitting	
Survey	Treated	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	•				
May 20	2.115	0.106	13.242	0.027	0.001	0.170	2.088	0.104	13.072
Jun 20	3.025	0.151	18.942	0.000	0.000	0.000	3.025	0.151	18.942
Jul 20	0.020	0.001	0.123	0.020	0.001	0.123	0.000	0.000	0.000
Aug 20	0.342	0.017	2.142	0.054	0.003	0.340	0.288	0.014	1.803
Sep 20	0.025	0.001	0.155	0.000	0.000	0.000	0.025	0.001	0.155
Oct 20	3.009	0.151	18.839	0.000	0.000	0.000	3.009	0.151	18.839
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.020	0.001	0.124	0.000	0.000	0.000	0.020	0.001	0.124
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (2)	0.012	0.001	0.076	0.000	0.000	0.000	0.012	0.001	0.076
April 21	2.075	0.104	12.993	0.000	0.000	0.000	2.075	0.104	12.993
May 21	0.010	0.001	0.063	0.000	0.000	0.000	0.010	0.001	0.063
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	15.042	0.753	94.194	11.027	0.552	69.052	4.015	0.201	25.142
Aug 21	9.235	0.462	57.827	0.000	0.000	0.000	9.235	0.462	57.827
Sep 21	3.038	0.152	19.023	0.000	0.000	0.000	3.038	0.152	19.023
Oct 21	0.025	0.001	0.159	0.000	0.000	0.000	0.025	0.001	0.159
Nov 21	1.031	0.052	6.453	0.000	0.000	0.000	1.031	0.052	6.453
Dec 21	0.064	0.003	0.398	0.000	0.000	0.000	0.064	0.003	0.398
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			array	site + 2 kn	n buffer				
May 20	3.297	0.084	19.209	0.081	0.002	0.474	3.216	0.082	18.735
Jun 20	6.082	0.154	35.438	1.027	0.026	5.984	5.055	0.128	29.453
Jul 20	0.030	0.001	0.174	0.020	0.000	0.115	0.010	0.000	0.060
Aug 20	6.615	0.168	38.542	2.081	0.053	12.127	4.534	0.115	26.415
Sep 20	1.054	0.027	6.143	0.000	0.000	0.000	1.054	0.027	6.143
Oct 20	3.013	0.076	17.554	0.000	0.000	0.000	3.013	0.076	17.554
Nov 20	0.004	0.000	0.022	0.000	0.000	0.000	0.004	0.000	0.022
Dec 20	0.044	0.001	0.256	0.000	0.000	0.000	0.044	0.001	0.256
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	AI	l behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
March 21 (1)	0.013	0.000	0.074	0.000	0.000	0.000	0.013	0.000	0.074
March 21 (2)	0.075	0.002	0.437	0.000	0.000	0.000	0.075	0.002	0.437
April 21	2.209	0.056	12.873	0.000	0.000	0.000	2.209	0.056	12.873
May 21	0.087	0.002	0.509	0.051	0.001	0.299	0.036	0.001	0.210
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	26.097	0.662	152.055	19.027	0.483	110.861	7.070	0.179	41.194
Aug 21	12.370	0.314	72.071	0.000	0.000	0.000	12.370	0.314	72.071
Sep 21	12.281	0.312	71.556	0.000	0.000	0.000	12.281	0.312	71.556
Oct 21	0.030	0.001	0.172	0.000	0.000	0.000	0.030	0.001	0.172
Nov 21	1.063	0.027	6.194	0.000	0.000	0.000	1.063	0.027	6.194
Dec 21	0.116	0.003	0.678	0.000	0.000	0.000	0.116	0.003	0.678
Jan 22	0.004	0.000	0.025	0.000	0.000	0.000	0.004	0.000	0.025
Feb 22	0.004	0.000	0.025	0.000	0.000	0.000	0.004	0.000	0.025
Mar 22	0.004	0.000	0.025	0.000	0.000	0.000	0.004	0.000	0.025
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Treated counts of puffin (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.54.

Table 5.54: Puffin treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
						а	rray site	•							
Count	0	0	0	0	1	1	3	0	0	0	0	0	0	2	1
Abundance	0	0	0	0	5	5	16	0	0	0	0	0	0	10	5
Density	0	0	0	0	0.04	0.04	0.13	0	0	0	0	0	0	0.08	0.04
					i	array sit	te + 2 kn	n buffei	r						
Count	0	0	0	2	1	1	3	0	0	0	0	0	0	2	1
Abundance	0	0	0	9	5	5	14	0	0	0	0	0	0	9	5
Density	0	0	0	0.04	0.02	0.02	0.06	0	0	0	0	0	0	0.04	0.02

Source: Natural Power

5.1.15.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of puffin within the array site for each month, calculated for DAS data, are presented in Table 5.55.

Table 5.55: Puffin monthly estimated flight densities within array site from DAS data

Density						Мо	nth					
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	0.000	0.000	0.000	0.000	0.001	0.000	0.276	0.001	0.000	0.000	0.000	0.000
S.D.	-	0.000	0.000	0.000	0.001	0.000	0.390	0.002	0.000	0.000	0.000	0.000

Source: Natural Power

5.1.15.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of puffin within the array site and array site plus 2 km buffer calculated from digital aerial and boat-based ESAS survey datasets are Presented in Table 5.56.

Table 5.56: Puffin bio-seasonal mean peak abundances (individuals) in array site and the array site plus a 2 kmbuffer from DAS data and boat-based ESAS survey data

Bio-season		Survey	v type	
-	Digit	al aerial	Boat-b	ased ESAS
-	Array	Array + 2 km	Array	Array + 2 km
RM (Mar – Apr)	6.496	6.449	5	9
MFBS (May – Jul)	56.568	93.746	13	11.5
PBM (Aug)	29.985	55.306	3	2.5
MFW (Sep – Feb)	18.931	44.555	0	0

5.1.16. Red-throated diver

5.1.16.1. Survey data

Treated counts of red-throated diver in flight and on the sea surface, with associated estimated densities and abundances, within the array site, the array site plus a 2 km buffer and the array site plus a 4 km buffer, derived from DAS data, are presented in Table 5.57.

Table 5.57: Red-throated diver treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	A	l beh <u>avio</u>	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	•				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 20	6.034	0.302	37.784	0.000	0.000	0.000	6.034	0.302	37.784
Nov 20	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262
Dec 20	2.982	0.149	18.674	0.000	0.000	0.000	2.982	0.149	18.674
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	4.000	0.200	25.048	0.000	0.000	0.000	4.000	0.200	25.048
March 21 (2)	4.948	0.248	30.986	0.000	0.000	0.000	4.948	0.248	30.986
April 21	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262
May 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 21	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262
Nov 21	5.000	0.250	31.310	0.000	0.000	0.000	5.000	0.250	31.310
Dec 21	4.034	0.202	25.260	0.000	0.000	0.000	4.034	0.202	25.260
Jan 22	35.000	1.752	219.169	0.000	0.000	0.000	35.000	1.752	219.169
Feb 22	13.000	0.651	81.406	0.000	0.000	0.000	13.000	0.651	81.406
Mar 22	16.034	0.802	100.404	0.000	0.000	0.000	16.034	0.802	100.404
Apr 22	4.000	0.200	25.048	0.000	0.000	0.000	4.000	0.200	25.048
			array s	site + 2 kn	n buffer				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 20	4.000	0.101	23.306	1.000	0.025	5.826	3.000	0.076	17.479
Oct 20	12.068	0.306	70.313	0.000	0.000	0.000	12.068	0.306	70.313
Nov 20	2.000	0.051	11.653	0.000	0.000	0.000	2.000	0.051	11.653
Dec 20	18.982	0.482	110.599	0.000	0.000	0.000	18.982	0.482	110.599

	Α	ll behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
Feb 21	3.034	0.077	17.677	0.000	0.000	0.000	3.034	0.077	17.677
March 21 (1)	13.000	0.330	75.744	0.000	0.000	0.000	13.000	0.330	75.744
March 21 (2)	18.897	0.479	110.100	0.000	0.000	0.000	18.897	0.479	110.100
April 21	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826
May 21	2.000	0.051	11.653	0.000	0.000	0.000	2.000	0.051	11.653
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 21	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826
Nov 21	6.000	0.152	34.959	0.000	0.000	0.000	6.000	0.152	34.959
Dec 21	11.068	0.281	64.486	0.000	0.000	0.000	11.068	0.281	64.486
Jan 22	45.000	1.142	262.191	2.000	0.051	11.653	43.000	1.091	250.538
Feb 22	28.000	0.710	163.141	0.000	0.000	0.000	28.000	0.710	163.141
Mar 22	22.034	0.559	128.380	0.000	0.000	0.000	22.034	0.559	128.380
Apr 22	9.000	0.228	52.438	0.000	0.000	0.000	9.000	0.228	52.438
			arrays	site + 4 kn	n buffer				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	1.000	0.017	5.989	0.000	0.000	0.000	1.000	0.017	5.989
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 20	8.034	0.134	48.118	2.000	0.033	11.979	6.034	0.101	36.139
Oct 20	12.068	0.202	72.279	0.000	0.000	0.000	12.068	0.202	72.279
Nov 20	4.000	0.067	23.958	0.000	0.000	0.000	4.000	0.067	23.958
Dec 20	21.982	0.367	131.660	1.000	0.017	5.989	20.982	0.350	125.671
Feb 21	6.034	0.101	36.139	0.000	0.000	0.000	6.034	0.101	36.139
March 21 (1)	16.034	0.268	96.033	1.000	0.017	5.989	15.034	0.251	90.044
March 21 (2)	26.897	0.449	161.094	0.000	0.000	0.000	26.897	0.449	161.094
April 21	3.000	0.050	17.968	0.000	0.000	0.000	3.000	0.050	17.968
May 21	2.000	0.033	11.979	0.000	0.000	0.000	2.000	0.033	11.979
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 21	1.000	0.017	5.989	0.000	0.000	0.000	1.000	0.017	5.989
Nov 21	9.000	0.150	53.905	0.000	0.000	0.000	9.000	0.150	53.905
Dec 21	14.068	0.235	84.258	0.000	0.000	0.000	14.068	0.235	84.258
Jan 22	47.000	0.785	281.502	3.000	0.050	17.968	44.000	0.735	263.533
Feb 22	33.000	0.551	197.650	0.000	0.000	0.000	33.000	0.551	197.650
Mar 22	31.034	0.518	185.874	0.000	0.000	0.000	31.034	0.518	185.874
Apr 22	13.000	0.217	77.862	0.000	0.000	0.000	13.000	0.217	77.862

Treated counts of red-throated diver (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site, the array site plus a 2 km buffer and the array site plus a 4 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.58.

 Table 5.58: Red-throated diver treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct - 18	Jan - 19	Feb - 19	Mar - 19	Apr - 19	May - 19	Jun - 19	Aug - 19	Sep - 19 (1)	Sep - 19 (2)	Oct - 19	Sec - 19	Jan - 20	Jul - 20	Aug - 20
						а	rray sit	e							
Count	0	7	6	5	1	0	0	0	0	0	0	0	10	0	0
Abundance	0	36	31	26	5	0	0	0	0	0	0	0	53	0	0
Density	0	0.29	0.25	0.21	0.04	0	0	0	0	0	0	0	0.42	0	0
					а	rray sit	:e + 2 kr	n buffer							
Count	0	9	16	17	2	0	0	0	0	0	0	4	20	0	0
Abundance	0	44	78	83	9	0	0	0	0	0	0	18	96	0	0
Density	0	0.19	0.34	0.36	0.04	0	0	0	0	0	0	0.08	0.42	0	0
					а	rray sit	e + 4 kı	n buffer							
Count	0	15	19	21	2	0	0	0	0	0	0	4	33	0	0
Abundance	0	75	93	104	11	0	0	0	0	0	0	22	165	0	0
Density	0	0.21	0.26	0.29	0.03	0	0	0	0	0	0	0.06	0.46	0	0

Source: Natural Power

5.1.16.2. Monthly mean flight density estimates

No red-throated diver were recorded in flight within the array site during digital aerial surveys.

5.1.16.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of red-throated diver within the array site, array site plus 2 km buffer and the array site plus 4 km buffer, calculated from digital aerial and boat-based ESAS survey datasets, are presented in Table 5.59.

 Table 5.59: Red-throated diver bio-seasonal mean peak abundances (individuals) in array site and the array site plus a 2 km buffer from DAS data and boat-based ESAS survey data

	Survey type										
Bio-season		Digital aerial			Boat-based E	SAS					
	Array	Array + 2 km	Array + 4 km	Array	Array + 2 km	Array + 4 km					
RM (Feb – Apr)	65.695	136.621	179.372	31	83	104					
MFBS (May – Aug)	0.000	5.826	8.984	0	0	0					
PBM (Sep – Nov)	34.547	52.636	63.092	0	0	0					
MWF (Dec – Jan)	118.922	186.395	206.581	44.5	70	120					

5.1.17. Great northern diver

5.1.17.1. Survey data

Treated counts of great northern diver in flight and on the sea surface, with associated estimated densities and abundances, within the array site, the array site plus a 2 km buffer and the array site plus a 4 km buffer, derived from DAS data, are presented in Table 5.60.

 Table 5.60: Great northern diver treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	Δ	ll behavio	urs	-	Flving			Sitting	
Survey	Treated	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km ²)	Abundance	Treated count	Density (indiv/km ²)	Abundance
				array site	•				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 20	0.002	0.000	0.012	0.000	0.000	0.000	0.002	0.000	0.012
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.054	0.003	0.335	0.000	0.000	0.000	0.054	0.003	0.335
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262
March 21 (2)	1.052	0.053	6.586	0.000	0.000	0.000	1.052	0.053	6.586
April 21	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262
May 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 21	0.002	0.000	0.012	0.000	0.000	0.000	0.002	0.000	0.012
Jan 22	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	1.002	0.050	6.274	0.000	0.000	0.000	1.002	0.050	6.274
Apr 22	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262
			arrays	site + 2 kn	n buffer				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 20	0.004	0.000	0.022	0.000	0.000	0.000	0.004	0.000	0.022
Nov 20	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826
Dec 20	4.054	0.103	23.618	0.000	0.000	0.000	4.054	0.103	23.618

	All behaviours				Flying		Sitting			
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	
Feb 21	0.002	0.000	0.011	0.000	0.000	0.000	0.002	0.000	0.011	
March 21 (1)	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826	
March 21 (2)	1.103	0.028	6.429	0.000	0.000	0.000	1.103	0.028	6.429	
April 21	3.000	0.076	17.479	0.000	0.000	0.000	3.000	0.076	17.479	
May 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Dec 21	0.004	0.000	0.022	0.000	0.000	0.000	0.004	0.000	0.022	
Jan 22	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826	
Feb 22	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826	
Mar 22	1.002	0.025	5.837	0.000	0.000	0.000	1.002	0.025	5.837	
Apr 22	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826	
			array	site + 4 kn	n buffer					
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Aug 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Sep 20	0.002	0.000	0.011	0.000	0.000	0.000	0.002	0.000	0.011	
Oct 20	0.004	0.000	0.022	0.000	0.000	0.000	0.004	0.000	0.022	
Nov 20	2.000	0.033	11.979	0.000	0.000	0.000	2.000	0.033	11.979	
Dec 20	4.054	0.068	24.278	0.000	0.000	0.000	4.054	0.068	24.278	
Feb 21	0.002	0.000	0.011	0.000	0.000	0.000	0.002	0.000	0.011	
March 21 (1)	1.002	0.017	6.000	0.000	0.000	0.000	1.002	0.017	6.000	
March 21 (2)	1.103	0.018	6.609	0.000	0.000	0.000	1.103	0.018	6.609	
April 21	3.000	0.050	17.968	0.000	0.000	0.000	3.000	0.050	17.968	
May 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Dec 21	0.004	0.000	0.022	0.000	0.000	0.000	0.004	0.000	0.022	
Jan 22	1.000	0.017	5.989	0.000	0.000	0.000	1.000	0.017	5.989	
Feb 22	2.000	0.033	11.979	0.000	0.000	0.000	2.000	0.033	11.979	
Mar 22	1.002	0.017	6.000	0.000	0.000	0.000	1.002	0.017	6.000	
Apr 22	1.000	0.017	5.989	0.000	0.000	0.000	1.000	0.017	5.989	

Treated counts of great northern diver (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site, the array site plus a 2 km buffer and the array site plus a 4 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.61.

 Table 5.61: Great northern diver treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct – 18	Jan - 19	Feb – 19	Mar – 19	Apr – 19	May – 19	Jun – 19	Aug – 19	Sep – 19 (1)	Sep – 19 (2)	Oct – 19	Sec – 19	Jan - 20	Jul – 20	Aug – 20
						а	rray site	e							
Count	0	1	3	1	0	0	0	0	0	1	0	1	2	0	0
Abundance	0	5	16	5	0	0	0	0	0	5	0	5	10	0	0
Density	0	0.04	0.13	0.04	0	0	0	0	0	0.04	0	0.04	0.08	0	0
					а	ırray sit	e + 2 kn	n buffer							
Count	0	2	6	1	0	0	0	0	0	1	0	1	2	0	0
Abundance	0	9	30	5	0	0	0	0	0	5	0	5	9	0	0
Density	0	0.04	0.13	0.02	0	0	0	0	0	0.02	0	0.02	0.04	0	0
					а	array sit	e + 4 kn	n buffer							
Count	0	3	9	2	0	0	0	0	0	3	0	2	5	0	0
Abundance	0	16	45	9	0	0	0	0	0	16	0	9	24	0	0
Density	0.00	0.04	0.13	0.03	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.03	0.07	0.00	0.00

Source: Natural Power

5.1.17.2. Monthly mean flight density estimates

No great northern diver were recorded in flight within the array site during digital aerial surveys.

5.1.17.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of great northern diver within the array site, array site plus 2 km buffer and the array site plus 4 km buffer, calculated from digital aerial and boat-based ESAS survey datasets, are presented in Table 5.62.

 Table 5.62: Great northern diver bio-seasonal mean peak abundances (individuals) in array site and the array site plus a 2 km buffer from DAS data and boat-based ESAS survey data

	Survey type										
Bio-season		Digital aerial		Boat-based ESAS							
-	Array	Array + 2 km	Array + 4 km	Array	Array + 2 km	Array + 4 km					
RM (Mar – May)	6.430	11.658	11.984	5	5	9					
MFBS (Jun – Aug)	0.000	0.000	0.000	0	0	0					
PBM (Sep – Nov)	0.006	2.913	5.989	2.5	2.5	8					
MFW (Dec - Feb)	3.299	14.722	18.129	13	19.5	34.5					

5.1.18. Fulmar

5.1.18.1. Survey data

Treated counts of fulmar in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.63.

 Table 5.63: Fulmar treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	А	ll behavio	urs		Flying			Sitting	
Survey	Treated	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	•				
May 20	2.000	0.100	12.524	2.000	0.100	12.524	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
Aug 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 20	2.000	0.100	12.524	2.000	0.100	12.524	0.000	0.000	0.000
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (1)	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
March 21 (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
April 21	3.000	0.150	18.786	1.000	0.050	6.262	2.000	0.100	12.524
May 21	2.000	0.100	12.524	1.000	0.050	6.262	1.000	0.050	6.262
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	2.000	0.100	12.524	1.000	0.050	6.262	1.000	0.050	6.262
Aug 21	4.000	0.200	25.048	2.000	0.100	12.524	2.000	0.100	12.524
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.003	0.000	0.020	0.003	0.000	0.020	0.000	0.000	0.000
Dec 21	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
			array	site + 2 kn	n buffer				
May 20	3.000	0.076	17.479	3.000	0.076	17.479	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	3.000	0.076	17.479	3.000	0.076	17.479	0.000	0.000	0.000
Aug 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 20	2.000	0.051	11.653	2.000	0.051	11.653	0.000	0.000	0.000
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	All behaviours				Flying		Sitting			
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	
March 21 (1)	2.000	0.051	11.653	1.000	0.025	5.826	1.000	0.025	5.826	
March 21 (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
April 21	3.000	0.076	17.479	1.000	0.025	5.826	2.000	0.051	11.653	
May 21	3.158	0.080	18.403	2.000	0.051	11.653	1.158	0.029	6.750	
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jul 21	2.000	0.051	11.653	1.000	0.025	5.826	1.000	0.025	5.826	
Aug 21	6.000	0.152	34.959	3.000	0.076	17.479	3.000	0.076	17.479	
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Nov 21	0.003	0.000	0.018	0.003	0.000	0.018	0.000	0.000	0.000	
Dec 21	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826	
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Feb 22	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000	
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Apr 22	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000	

Treated counts of fulmar (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.64.

Table 5.64: Fulmar treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct – 18	Jan - 19	Feb – 19	Mar – 19	Apr – 19	May – 19	Jun – 19	Aug – 19	Sep - 19 (1)	Sep – 19 (2)	Oct – 19	Sec – 19	Jan – 20	Jul – 20	Aug – 20
						а	rray site	e							
Count	0	1.00	0	0	0	1.00	2.00	0	1.00	0	0	1.00	0	0	3.00
Abundance	0	5.22	0	0	0	5.22	10.44	0	5.22	0	0	5.22	0	0	15.66
Density	0	0.04	0	0	0	0.04	0.08	0	0.04	0	0	0.04	0	0	0.13
					а	ırray sit	e + 2 kr	n buffer							
Count	0	3.00	0	0	1.00	1.00	4.00	1.00	3.00	0	0	1.00	0	1.00	6.00
Abundance	0	14.57	0	0	4.86	4.86	19.43	4.86	14.57	0	0	4.86	0	4.86	29.14
Density	0	0.06	0	0	0.02	0.02	0.08	0.02	0.06	0	0	0.02	0	0.02	0.13

Source: Natural Power

5.1.18.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of fulmar within the array site for each month, calculated for DAS data, are presented in Table 5.65.

Table 5.65: Fulmar monthly estimated flight densities within array site from DAS data

Density	_	Month												
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Mean	0	0	0.017	0.05	0.075	0	0.05	0.05	0.05	0	0	0		
S.D.	-	0	0.029	0	0.035	0	0	0.071	0.071	0	0	0		

Source: Natural Power

5.1.18.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of fulmar within the array site and array site plus 2 km buffer, calculated from digital aerial and boat-based ESAS survey datasets, are presented in Table 5.66.

Table 5.66: Fulmar bio-seasonal mean peak abundances (individuals) in array site and the array site plus a 2 kmbuffer from DAS data and boat-based ESAS survey data

Bio-season	Survey type										
	Digit	al aerial	Boat-b	ased ESAS							
	Array	Array + 2 km	Array	Array + 2 km							
RM (Dec – Mar)	3.131	8.74	2.610	4.856							
MFBS (Apr – Aug)	4.870	26.219	6.524	12.141							
PBM (Sep – Oct)	3.131	5.826	1.305	3.642							
MFW (Nov)	0.005	0.009	NA*	NA*							

Source: Natural Power. *No boat-based ESAS surveys undertaken in migration-free winter bio-season (November)

5.1.19. Manx shearwater

5.1.19.1. Survey data

Treated counts of Manx shearwater in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.67.

 Table 5.67: Manx shearwater treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	AI	l behavio	urs		Flying		Sitting			
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	
				array site	•					
May 20	79.583	3.983	498.346	23.472	1.175	146.983	56.110	2.808	351.363	
Jun 20	9.185	0.460	57.517	5.000	0.250	31.310	4.185	0.209	26.207	
Jul 20	2.000	0.100	12.524	2.000	0.100	12.524	0.000	0.000	0.000	
Aug 20	122.412	6.126	766.544	53.945	2.700	337.801	68.468	3.427	428.743	
Sep 20	20.076	1.005	125.716	13.000	0.651	81.406	7.076	0.354	44.310	
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
March 21 (1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
March 21 (2)	2.038	0.102	12.762	2.000	0.100	12.524	0.038	0.002	0.238	
April 21	33.555	1.679	210.122	4.000	0.200	25.048	29.555	1.479	185.074	
May 21	29.062	1.454	181.984	1.000	0.050	6.262	28.062	1.404	175.722	
Jun 21	40.000	2.002	250.479	18.000	0.901	112.716	22.000	1.101	137.764	
Jul 21	7.534	0.377	47.178	7.472	0.374	46.792	0.062	0.003	0.386	
Aug 21	50.727	2.539	317.654	15.000	0.751	93.930	35.727	1.788	223.724	
Sep 21	11.133	0.557	69.715	8.000	0.400	50.096	3.133	0.157	19.619	
Oct 21	2.057	0.103	12.881	2.000	0.100	12.524	0.057	0.003	0.357	
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Dec 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Apr 22	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000	
			array s	site + 2 kn	n buffer					
May 20	184.823	4.690	1076.866	48.417	1.229	282.101	136.406	3.461	794.765	
Jun 20	12.843	0.326	74.827	8.472	0.215	49.364	4.370	0.111	25.463	
Jul 20	7.000	0.178	40.785	6.000	0.152	34.959	1.000	0.025	5.826	
Aug 20	300.476	7.624	1750.713	89.417	2.269	520.986	211.059	5.355	1229.727	
Sep 20	48.171	1.222	280.667	23.000	0.584	134.009	25.171	0.639	146.658	
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

	Α	II behavio	urs		Flying		Sitting			
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	
Feb 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
March 21 (1)	0.019	0.000	0.111	0.000	0.000	0.000	0.019	0.000	0.111	
March 21 (2)	9.323	0.237	54.321	5.000	0.127	29.132	4.323	0.110	25.188	
April 21	89.604	2.274	522.075	29.000	0.736	168.968	60.604	1.538	353.107	
May 21	83.062	2.108	483.956	5.000	0.127	29.132	78.062	1.981	454.824	
Jun 21	49.000	1.243	285.497	20.000	0.507	116.529	29.000	0.736	168.968	
Jul 21	19.904	0.505	115.971	12.472	0.316	72.670	7.432	0.189	43.301	
Aug 21	85.714	2.175	499.412	32.000	0.812	186.447	53.714	1.363	312.965	
Sep 21	47.102	1.195	274.440	15.000	0.381	87.397	32.102	0.815	187.043	
Oct 21	3.157	0.080	18.394	2.081	0.053	12.124	1.076	0.027	6.269	
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Dec 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Apr 22	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000	

Treated counts of Manx shearwater (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boatbased ESAS survey data, are presented in Table 5.68.

 Table 5.68: Manx shearwater treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct – 18	Jan – 19	Feb – 19	Mar – 19	Apr – 19	May – 19	Jun – 19	Aug – 19	Sep – 19 (1)	Sep – 19 (2)	Oct – 19	Sec – 19	Jan – 20	Jul – 20	Aug – 20
						a	rray site	9							
Count	0	0	0	1	44	39	8	3	11	13	0	0	0	65	24
Abundance	0	0	0	5	230	204	41	16	58	68	0	0	0	339	125
Density	0	0	0	0.04	1.84	1.63	0.33	0.13	0.46	0.54	0	0	0	2.71	1
					а	array si	te + 2 kr	n buffei							
Count	0	0	0	1	279	63	15	31	15	17	0	0	0	425	316
Abundance	0	0	0	5	1355	305	73	152	73	83	0	0	0	2064	1534
Density	0	0	0	0.02	5.9	1.33	0.32	0.66	0.32	0.36	0	0	0	8.99	6.68

Source: Natural Power

5.1.19.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of Manx shearwater within the array site for each month, calculated for DAS data, are presented in Table 5.69.

Table 5.69: Manx shearwater monthly estimated flight densities within array site from DAS data

Density						Мо	nth					
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	0.000	0.000	0.033	0.125	0.612	0.576	0.237	1.725	0.525	0.050	0.000	0.000
S.D.	-	0.000	0.058	0.106	0.795	0.460	0.194	1.378	0.177	0.071	0.000	0.000

Source: Natural Power

5.1.19.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of Manx shearwater within the array site and array site plus 2 km buffer, calculated from digital aerial and boat-based ESAS survey datasets, are presented in Table 5.70.

 Table 5.70: Manx shearwater bio-seasonal mean peak abundances (individuals) in array site and the array site plus a 2 km buffer from DAS data and boat-based ESAS survey data

Bio-season		Survey	v type	
_	Digita	al aerial	Boat-b	ased ESAS
_	Array	Array + 2 km	Array	Array + 2 km
RM (Mar – May)	340.165	780.411	230	1,355
MFBS (Jun – Jul)	153.998	180.162	190	1,068.5
PBM (Aug – Oct)	542.099	1125.063	96.5	843
MFW (Nov – Feb)	0.000	0.000	0	0

5.1.20. Gannet

5.1.20.1. Survey data

Treated counts of gannet in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.71.

 Table 5.71: Gannet treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	A	ll behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	•				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	2.000	0.100	12.524	1.000	0.050	6.262	1.000	0.050	6.262
Sep 20	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 20	2.000	0.100	12.524	2.000	0.100	12.524	0.000	0.000	0.000
Dec 20	17.000	0.851	106.454	7.000	0.350	43.834	10.000	0.500	62.620
Feb 21	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262
March 21 (1)	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
March 21 (2)	2.000	0.100	12.524	1.000	0.050	6.262	1.000	0.050	6.262
April 21	4.000	0.200	25.048	2.000	0.100	12.524	2.000	0.100	12.524
May 21	8.000	0.400	50.096	7.000	0.350	43.834	1.000	0.050	6.262
Jun 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 21	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
Aug 21	2.000	0.100	12.524	0.000	0.000	0.000	2.000	0.100	12.524
Sep 21	2.000	0.100	12.524	2.000	0.100	12.524	0.000	0.000	0.000
Oct 21	2.000	0.100	12.524	1.000	0.050	6.262	1.000	0.050	6.262
Nov 21	3.000	0.150	18.786	1.000	0.050	6.262	2.000	0.100	12.524
Dec 21	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
Jan 22	6.000	0.300	37.572	3.000	0.150	18.786	3.000	0.150	18.786
Feb 22	3.000	0.150	18.786	2.000	0.100	12.524	1.000	0.050	6.262
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
			arrays	site + 2 kn	n buffer				
May 20	20.000	0.507	116.529	10.000	0.254	58.265	10.000	0.254	58.265
Jun 20	2.000	0.051	11.653	1.000	0.025	5.826	1.000	0.025	5.826
Jul 20	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000
Aug 20	9.000	0.228	52.438	5.000	0.127	29.132	4.000	0.101	23.306
Sep 20	12.000	0.304	69.918	7.000	0.178	40.785	5.000	0.127	29.132
Oct 20	3.000	0.076	17.479	0.000	0.000	0.000	3.000	0.076	17.479
Nov 20	4.000	0.101	23.306	4.000	0.101	23.306	0.000	0.000	0.000
Dec 20	26.000	0.660	151.488	11.000	0.279	64.091	15.000	0.381	87.397

	Α	II behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
Feb 21	2.000	0.051	11.653	0.000	0.000	0.000	2.000	0.051	11.653
March 21 (1)	2.000	0.051	11.653	2.000	0.051	11.653	0.000	0.000	0.000
March 21 (2)	5.000	0.127	29.132	2.000	0.051	11.653	3.000	0.076	17.479
April 21	15.000	0.381	87.397	6.000	0.152	34.959	9.000	0.228	52.438
May 21	16.000	0.406	93.223	12.000	0.304	69.918	4.000	0.101	23.306
Jun 21	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000
Jul 21	3.000	0.076	17.479	2.000	0.051	11.653	1.000	0.025	5.826
Aug 21	5.000	0.127	29.132	1.000	0.025	5.826	4.000	0.101	23.306
Sep 21	3.000	0.076	17.479	3.000	0.076	17.479	0.000	0.000	0.000
Oct 21	5.000	0.127	29.132	3.000	0.076	17.479	2.000	0.051	11.653
Nov 21	7.000	0.178	40.785	2.000	0.051	11.653	5.000	0.127	29.132
Dec 21	2.000	0.051	11.653	2.000	0.051	11.653	0.000	0.000	0.000
Jan 22	10.000	0.254	58.265	6.000	0.152	34.959	4.000	0.101	23.306
Feb 22	6.000	0.152	34.959	5.000	0.127	29.132	1.000	0.025	5.826
Mar 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr 22	2.000	0.051	11.653	2.000	0.051	11.653	0.000	0.000	0.000

Treated counts of gannet (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.72.

 Table 5.72: Gannet treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct – 18	Jan – 19	Feb – 19	Mar – 19	Apr – 19	May – 19	Jun – 19	Aug – 19	Sep - 19 (1)	Sep – 19 (2)	Oct – 19	Sec – 19	Jan – 20	Jul – 20	Aug – 20
						а	rray sit	9							
Count	5	0	0	1	4	0	3	4	5	4	2	0	0	1	21
Abundance	26	0	0	5	21	0	16	21	26	21	10	0	0	5	110
Density	0.21	0	0	0.04	0.17	0	0.13	0.17	0.21	0.17	0.08	0	0	0.04	0.88
					â	array sit	te + 2 kr	n buffer							
Count	10	0	1	2	26	4	5	6	14	13	2	0	0	5	32
Abundance	48	0	5	9	126	18	25	30	69	62	9	0	0	25	156
Density	0.21	0	0.02	0.04	0.55	0.08	0.11	0.13	0.3	0.27	0.04	0	0	0.11	0.68

Source: Natural Power

5.1.20.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of gannet within the array site for each month, calculated for DAS data, are presented in Table 5.73.

Table 5.73: Gannet monthly estimated flight densities within array site from DAS data

Density						Мо	nth					
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	0.150	0.050	0.033	0.075	0.175	0.025	0.025	0.025	0.075	0.025	0.075	0.200
S.D.	-	0.071	0.029	0.035	0.248	0.035	0.035	0.035	0.035	0.035	0.035	0.212

Source: Natural Power

5.1.20.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of gannet within the array site and array site plus 2 km buffer, calculated from digital aerial and boat-based ESAS survey datasets, are presented in Table 5.74.

Table 5.74: Gannet bio-seasonal mean peak abundances (individuals) in array site and the array site plus a 2 kmbuffer from DAS data and boat-based ESAS survey data

		Survey	v type	
Bio-season	Digit	al aerial	Boat-b	ased ESAS
	Array	Array + 2 km	Array	Array + 2 km
RM (Dec – Mar)	72.013	104.876	10.5	63
MFBS (Apr – Aug)	37.572	104.876	65.5	93
PBM (Sep – Nov)	15.655	55.351	18	39

5.1.21. Cormorant

5.1.21.1. Survey data

Treated counts of cormorant in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.75.

 Table 5.75: Cormorant treated counts and estimated densities and abundances within the array site and array site plus 2 km buffer for each digital aerial survey

	Α	ll behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
				array site	•				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	0.444	0.022	2.783	0.000	0.000	0.000	0.444	0.022	2.783
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 20	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262
Nov 20	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262
Dec 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 21	0.300	0.015	1.879	0.000	0.000	0.000	0.300	0.015	1.879
March 21 (1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
April 21	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000
May 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 21	0.222	0.011	1.392	0.000	0.000	0.000	0.222	0.011	1.392
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	0.300	0.015	1.879	0.000	0.000	0.000	0.300	0.015	1.879
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			array	site + 2 kn	n buffer				
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 20	1.444	0.037	8.416	1.000	0.025	5.826	0.444	0.011	2.590
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct 20	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826
Nov 20	3.000	0.076	17.479	0.000	0.000	0.000	3.000	0.076	17.479
Dec 20	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826
Feb 21	2.300	0.058	13.401	0.000	0.000	0.000	2.300	0.058	13.401

	Α	ll behavio	urs		Flying			Sitting	
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance
March 21 (1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
March 21 (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
April 21	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000
May 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun 21	0.444	0.011	2.590	0.000	0.000	0.000	0.444	0.011	2.590
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug 21	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000
Sep 21	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826
Oct 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jan 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar 22	1.300	0.033	7.574	0.000	0.000	0.000	1.300	0.033	7.574
Apr 22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Treated counts of cormorant (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.76.

Table 5.76: Cormorant treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct – 18	Jan - 19	Feb – 19	Mar – 19	Apr – 19	May – 19	Jun – 19	Aug – 19	Sep – 19 (1)	Sep – 19 (2)	Oct – 19	Sec – 19	Jan - 20	Jul – 20	Aug – 20
						a	ray sit	e							
Count	0	1	0	0	0	1	0	9	0	0	0	0	0	2	10
Abundance	0	5	0	0	0	5	0	48	0	0	0	0	0	10	53
Density	0	0.04	0	0	0	0.04	0	0.38	0	0	0	0	0	0.08	0.42
						array site	e + 2 k	m buffer							
Count	0	1	0	0	0	1	0	18	0	0	0	0	0	5	15
Abundance	0	5	0	0	0	5	0	87	0	0	0	0	0	25	73
Density	0	0.02	0	0	0	0.02	0	0.38	0	0	0	0	0	0.11	0.32

Source: Natural Power

5.1.21.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of cormorant within the array site for each month, calculated for DAS data, are presented in Table 5.77.

Table 5.77: Cormorant monthly estimated flight densities within array site from DAS data

Density						Мо	nth					
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	0.000	0.000	0.000	0.025	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
S.D.	-	0.000	0.000	0.035	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Source: Natural Power

5.1.21.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of cormorant within the array site and array site plus 2 km buffer, calculated from digital aerial and boat-based ESAS survey datasets, are presented in Table 5.78.

Table 5.78: Cormorant bio-seasonal mean peak abundances (individuals) in array site and the array site plus a 2km buffer from DAS data and boat-based ESAS survey data

	Survey type										
Bio-season	Digit	al aerial	Boat-based ESAS								
_	Array	Array + 2 km	Array	Array + 2 km							
B (Apr – Aug)	3.827	7.121	50.5	80							
NB (Sep – Mar)	4.070	12.527	2.5	2.5							

5.1.22. Shag

5.1.22.1. Survey data

Treated counts of shag in flight and on the sea surface, with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from DAS data, are presented in Table 5.79.

Table 5.79	Shag treated	counts and	estimated	densities	and ab	undances	within	the array	site a	and a	rray	site
	plus 2 km b	ouffer for eac	h digital a	erial surve	ey 🛛							

	А	ll behavio	urs		Flying			Sitting				
Survey	Treated	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance			
				array site	•							
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Aug 20	1.556	0.078	9.741	0.000	0.000	0.000	1.556	0.078	9.741			
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Oct 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Nov 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Dec 20	3.000	0.150	18.786	1.000	0.050	6.262	2.000	0.100	12.524			
Feb 21	0.700	0.035	4.383	0.000	0.000	0.000	0.700	0.035	4.383			
March 21 (1)	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262			
March 21 (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
April 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
May 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Jun 21	0.778	0.039	4.870	0.000	0.000	0.000	0.778	0.039	4.870			
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Sep 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Oct 21	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262			
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Dec 21	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262			
Jan 22	3.000	0.150	18.786	0.000	0.000	0.000	3.000	0.150	18.786			
Feb 22	1.000	0.050	6.262	1.000	0.050	6.262	0.000	0.000	0.000			
Mar 22	0.700	0.035	4.383	0.000	0.000	0.000	0.700	0.035	4.383			
Apr 22	1.000	0.050	6.262	0.000	0.000	0.000	1.000	0.050	6.262			
			array	site + 2 kn	n buffer							
May 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Jun 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Jul 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Aug 20	1.556	0.039	9.063	0.000	0.000	0.000	1.556	0.039	9.063			
Sep 20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Oct 20	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000			
Nov 20	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826			
Dec 20	11.000	0.279	64.091	3.000	0.076	17.479	8.000	0.203	46.612			
Feb 21	2.700	0.069	15.731	1.000	0.025	5.826	1.700	0.043	9.905			

	Α	II behavio	urs		Flying		Sitting				
Survey	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance	Treated count	Density (indiv/km²)	Abundance		
March 21 (1)	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826		
March 21 (2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
April 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
May 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Jun 21	1.556	0.039	9.063	0.000	0.000	0.000	1.556	0.039	9.063		
Jul 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Aug 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Sep 21	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826		
Oct 21	1.000	0.025	5.826	0.000	0.000	0.000	1.000	0.025	5.826		
Nov 21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Dec 21	2.000	0.051	11.653	0.000	0.000	0.000	2.000	0.051	11.653		
Jan 22	4.000	0.101	23.306	0.000	0.000	0.000	4.000	0.101	23.306		
Feb 22	1.000	0.025	5.826	1.000	0.025	5.826	0.000	0.000	0.000		
Mar 22	1.700	0.043	9.905	0.000	0.000	0.000	1.700	0.043	9.905		
Apr 22	3.000	0.076	17.479	0.000	0.000	0.000	3.000	0.076	17.479		

Treated counts of shag (cumulative, including birds in flight and on the sea surface), with associated estimated densities and abundances, within the array site and the array site plus a 2 km buffer, derived from boat-based ESAS survey data, are presented in Table 5.80.

Table 5.80: Shag treated counts and estimated densities and abundances within the array site only and the array site plus a 2 km buffer for each boat-based ESAS survey

Survey	Oct – 18	Jan - 19	Feb – 19	Mar – 19	Apr – 19	May – 19	Jun – 19	Aug – 19	Sep - 19 (1)	Sep – 19 (2)	Oct – 19	Sec – 19	Jan - 20	Jul – 20	Aug – 20
array site															
Count	0	1	0	0	0	0	0	1	0	0	1	2	4	1	5
Abundance	0	5	0	0	0	0	0	5	0	0	5	10	21	5	26
Density	0	0.04	0	0	0	0	0	0.04	0	0	0.04	0.08	0.17	0.04	0.21
					a	array si	te + 2 kr	n buffer							
Count	0	2	1	0	0	0	1	1	2	4	3	12	6	1	8
Abundance	0	9	5	0	0	0	5	5	9	18	14	57	30	5	39
Density	0	0.04	0.02	0	0	0	0.02	0.02	0.04	0.08	0.06	0.25	0.13	0.02	0.17

Source: Natural Power

5.1.22.2. Monthly mean flight density estimates

Mean flight densities (and standard deviations) of shag within the array site for each month, calculated for DAS data, are presented in Table 5.81.

Table 5.81: Shag monthly estimated flight densities within array site from DAS data

Density		Month												
(indiv./ km)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Mean	0.000	0.025	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.025		
S.D.	-	0.035	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.035		

Source: Natural Power

5.1.22.3. Biological seasonal mean peak estimates

Bio-seasonal mean peak abundance estimates of shag within the array site and array site plus 2 km buffer, calculated from digital aerial and boat-based ESAS survey datasets, are presented in Table 5.82.

Table 5.82: Shag bio-seasonal mean peak abundances (individuals) in array site and the array site plus a 2 kmbuffer from DAS data and boat-based ESAS survey data

	Survey type										
Bio-season	Digit	al aerial	Boat-b	ased ESAS							
-	Array	Array + 2 km	Array	Array + 2 km							
RM (Dec – Feb)	18.786	43.699	13	33							
MFBS (Mar – Jul)	6.262	11.653	13	22							
PBM (Aug – Oct)	8.001	7.445	5	16							
MFW (Nov)	0.000	2.913	NA*	NA*							

Source: Natural Power *No boat-based ESAS surveys undertaken in migration-free winter bio-season (November)

5.1.23. Other seabird species

Table 5.83: Other seabird species recorded within the array site and buffers during DAS and boat-based ESAS surveys

Species	Survey	Notes
Common scotor	DAS	Single individual on sea within 2 km buffer area March 2021.
Common scoler	Boat-based ESAS	Three individuals together within 2-4 km buffer area in flight January 2019.
Red-breasted	DAS	Single individual in flight in array site September 2020.
merganser	Boat-based ESAS	No records.
	DAS	No records.
Sabine's gull	Boat-based ESAS	Single individual in flight in array site September 2019. Single individual on sea within 2-4 km buffer area September 2019.
Little tern	DAS	Single individuals in flight within 2 km buffer area in May and August 2021. Two birds together in flight within the array site in September 2021.
	Boat-based ESAS	No records.
Great skua	DAS	Six individuals recordedOne in flight in 2 km buffer area September 2020

Species	Survey	Notes
		 One in flight in 2 km buffer area, two in flight in 2-4 km buffer area and one on the sea in the 2-4 km buffer area in November 2021
		One on the sea in the 2-4 km buffer area in January 2022
		Five individuals recorded
	Boat-based ESAS	 One in flight and one on the sea in the 2 km buffer area in September 2019 One in flight in the array site in October 2019
		Two in flight in the 2-4 km buffer area in December 2019
Pomarine skua	DAS	Single individual on sea within 2 km buffer area in October 2021.
	Boat-based ESAS	Single individual in flight in the array site in April 2019.
	DAS	Single individual in flight within 2-4 km buffer area in July 2021.
		Ten individuals recorded
Arctic skua	Boat-based ESAS	One in flight in the array site in April 2019
		Eight in September 2019 (one in flight within array site, seven within buffer areas)
Die eis three steel disser	DAS	Single individual on sea within array site in January 2022.
Black-throated diver	Boat-based ESAS	No records.
	DAS	Four individuals in flight within array site in August 2021.
		Seven individuals recorded
Storm petrel	Boat-based ESAS	 Two in flight in May 2019 (one within array site, one within buffer area) One in flight in the buffer area in June 2019 One in flight in the buffer area in August 2019 One in flight in the buffer area in September 2019 One in flight in the buffer area in July 2020
		One in flight in array site in August 2020
	DAS	No records.
Great shearwater	Boat-based ESAS	Single individual in flight in the buffer area in August 2020.
Balearic shearwater	DAS	Single individual in flight within 2-4 km buffer area in September 2020.
	Boat-based ESAS	No records.

5.2. Intertidal Ornithology

The below species accounts present information about the numbers of key species within the intertidal landfall survey area throughout the year and their distributions in relation to landfall infrastructure and the OECC through South Dublin Bay.

For tern species, which aggregate in internationally important numbers within South Dublin Bay during post-breeding periods, additional information is presented about the numbers and distributions of roosting birds.

5.2.1. Light-bellied brent goose

5.2.1.1. Survey data

Light-bellied brent geese were recorded within the Project landfall survey area in 52 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.84.

	Year 1: Oc to Septen	tober 2019 1ber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 nber 2022	Year 4: October 2022 to March 2023		
Month	Monthly	Monthly							
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	
January	31	446	34	61	28	7	121	7	
February	50	165	27	24	299	13	25	23	
March	68	45	59	11	25	11	63	60	
April	N/A	N/A	45	35	412	1			
Мау	0	N/A	0	0	0	0			
June	0	0	0	0	0	0	N	(Λ	
July	0	0	0	0	0	0	IN/	~	
August	0	0	0	0	0	0			
September	0	164	0	0	0	65			
October	7	168	155	213	120	4	93	85	
November	38	94	602	302	225	67	284	470	
December	137	2	0	0	346	57	50	372	

Table 5.84: Total counts of light-bellied brent goose per survey – South Dublin Bay survey area

Source: Natural Power

5.2.1.2. Temporal variation in abundance

Monthly variation in average light-bellied brent goose counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.1, with shading to represent one standard error.

Figure 5.1: Annual variation in average counts of light-bellied brent geese

5.2.1.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by lightbellied brent geese during baseline landfall surveys is shown in Figure 5.2.

5.2.2. Shelduck

5.2.2.1. Survey data

Shelduck were recorded within the Project landfall survey area in 51 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.85.

Manth	Year 1: Oc to Septen	tober 2019 1ber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 nber 2022	Year 4: October 2022 to March 2023		
WONTN	Monthly	Monthly							
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	
January	10	2	0	5	0	0	8	12	
February	14	17	0	0	25	27	15	0	
March	18	2	5	0	8	12	14	2	
April	N/A	N/A	0	3	12	2			
Мау	2	N/A	2	9	10	0			
June	45	0	2	0	2	4	N	Δ	
July	7	0	0	0	4	0	1 1/	~	
August	4	6	4	7	0	0			
September	10	6	4	0	4	0			
October	0	0	0	0	8	2	2	17	
November	0	0	0	4	2	2	8	8	
December	0	0	0	0	10	15	2	20	

Table 5.85: Total counts of Shelduck per survey – South Dublin Bay survey area

Source: Natural Power

5.2.2.2. Temporal variation in abundance

Monthly variation in average shelduck counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.3, with shading to represent one standard error.

Figure 5.3: Annual variation in average counts of shelduck

5.2.2.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by shelduck during baseline landfall surveys is shown in Figure 5.4.

5.2.3. Pintail, shoveler and teal

5.2.3.1. Survey data

These three dabbling duck species are treated collectively as they occurred infrequently and in relatively small numbers during surveys of the intertidal landfall area and are all SCIs of the nearby North Bull Island SPA.

Pintail were each only recorded during one of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023, while shoveler were recorded during two surveys and teal were recorded during 9 surveys (Table 5.65). Pintail were recorded in flight over the survey area (one flock of 16 individuals only) and as such are not considered further. Total counts of each of these species on each survey are presented in Table 5.86.

	Yea	tober 2	2019	Yea	r 2: Oc	tober 2	2020	Year 3: October 2021				Year	Year 4: October 2022			
	to September 2020				to	Septen	nber 2(021	to	Septer	nber 2()22	t	o Marc	h 2023	3
Month	Mon	thly	Mor	nthly	Mon	thly	Mon	thly	Mon	thly	Mon	thly	Mon	thly	Mon	thly
	surv	ey 1	surv	vey 2	surv	ey 1	surv	ey 2	surv	ey 1	surv	ey 2	surv	ey 1	surv	ey 2
	SV	Т.	SV	Τ.	SV	Τ.	SV	Τ.	SV	Т.	SV	Т.	SV	Т.	SV	Т.
January	0	16	0	0	0	0	0	0	0	0	0	0	0	11	0	0
February	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0
March	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	17
April	N/A	N/A	N/A	N/A	0	0	0	0	0	0	0	0				
Мау	0	0	N/A	N/A	0	0	0	0	0	0	0	0				
June	0	0	0	0	0	0	0	0	0	0	0	0		NI	/Δ	
July	0	0	0	0	0	0	0	0	0	0	0	0		IN/	~	
August	0	0	0	0	0	0	0	0	0	0	0	0				
September	0	0	0	0	0	0	0	0	0	0	0	3				
October	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
November	0	43	0	71	6	0	0	0	0	0	0	0	0	4	0	6
December	0	19	0	49	0	6	0	3	1	0	0	0	0	0	0	5

Table 5.86: Shoveler (SV) and teal (T.) per survey - South Dublin Bay survey area

Source: Natural Power

5.2.3.2. Temporal variation in abundance

Monthly variation in average shoveler and teal counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.5, with shading to represent one standard error.

Figure 5.5: Annual variation in average counts of shoveler and teal

5.2.3.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by shoveler and teal during baseline landfall surveys is shown in Figure 5.6 (pintail were only recorded in flight).

5.2.4. Common scoter

5.2.4.1. Survey data

Common scoter were recorded within the Project landfall survey area in 23 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.87.

	Year 1: Oc to Septen	tober 2019 nber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 1ber 2022	Year 4: October 2022 to March 2023	
Month	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2
January	0	71	0	0	0	0	0	50
February	0	0	0	0	0	5	22	8
March	0	0	8	6	0	0	0	0
April	N/A	N/A	0	0	0	0		
Мау	0	N/A	0	0	0	0		
June	0	0	0	0	0	0	N/	/Δ
July	0	0	0	0	0	0	11/	~
August	0	0	6	0	0	0		
September	0	13	14	2	0	8		
October	0	0	0	0	24	0	22	18
November	0	99	0	0	0	14	48	0
December	28	8	0	0	0	66	9	8

Table 5.87: Total counts of common scoter per survey – South Dublin Bay survey area

Source: Natural Power

5.2.4.2. Temporal variation in abundance

Monthly variation in average common scoter counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.8, with shading to represent one standard error.

5.2.4.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by common scoter during baseline landfall surveys is shown in Figure 5.9.

291,200

5.2.5. Red-breasted merganser

5.2.5.1. Survey data

Red-breasted merganser were recorded within the Project landfall survey area in 67 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.88.

Month	Year 1: October 2019 to September 2020		Year 2: Oc to Septen	Year 2: October 2020 to September 2021		tober 2021 1ber 2022	Year 4: October 2022 to March 2023	
Month	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	4	33	37	26	0	10	8	39
February	12	10	21	20	14	21	12	16
March	13	2	25	37	48	26	2	3
April	N/A	N/A	151	2	6	0		
Мау	23	N/A	0	3	0	0		
June	8	15	0	0	6	1	N/	Δ
July	0	3	0	10	0	1	IN/	~
August	0	0	10	7	14	3		
September	0	35	16	19	56	29		
October	10	15	30	21	23	47	14	14
November	10	13	47	60	40	47	28	28
December	16	8	24	0	13	28	17	17

Table 5.88: Total counts of red-breasted merganser per survey – South Dublin Bay survey area

Source: Natural Power

5.2.5.2. Temporal variation in abundance

Monthly variation in average red-breasted merganser counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.10, with shading to represent one standard error.

Figure 5.10: Annual variation in average counts of red-breasted merganser

5.2.5.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by redbreasted merganser during baseline landfall surveys is shown in Figure 5.11.

5.2.6. Red-throated diver

5.2.6.1. Survey data

Red-throated diver were recorded within the Project landfall survey area in 42 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.89.

	Year 1: Oc to Septen	tober 2019 nber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 nber 2022	Year 4: Oct to Marc	tober 2022 :h 2023
Month	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2
January	19	4	9	4	0	0	5	15
February	2	8	2	6	7	8	2	3
March	9	0	6	7	4	2	2	0
April	N/A	N/A	6	0	0	0		
Мау	0	N/A	0	0	0	0		
June	0	0	0	0	0	0	N	/Δ
July	0	0	0	0	0	0	1 1/	~
August	0	0	0	0	0	0		
September	0	0	71	0	0	0		
October	0	9	1	1	9	5	5	4
November	0	18	4	2	15	9	8	4
December	0	8	1	0	13	15	5	2

Table 5.89: Total counts of red-throated diver per survey – South Dublin Bay survey area

Source: Natural Power

5.2.6.2. Temporal variation in abundance

Monthly variation in average red-throated diver counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.12, with shading to represent one standard error.

Figure 5.12: Annual variation in average counts of red-throated diver

5.2.6.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by redthroated diver during baseline landfall surveys is shown in Figure 5.13.

286,800

289,000

5.2.7. Great crested grebe

5.2.7.1. Survey data

Great crested grebe were recorded within the Project landfall survey area in 64 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.90.

B A o máth	Year 1: Oc to Septen	tober 2019 nber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 nber 2022	Year 4: October 2022 to March 2023	
WORTH	Monthly	Monthly						
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	99	258	190	248	0	11	10	228
February	39	124	34	15	12	134	12	53
March	101	4	4	26	30	25	0	23
April	N/A	N/A	14	0	8	0		
Мау	0	N/A	0	9	0	5		
June	0	0	1	0	8	0	N	Δ
July	0	0	0	0	1	3	IN.	~
August	120	35	4	1	52	42		
September	21	95	6	10	29	11		
October	1	22	18	17	64	239	19	79
November	0	912	48	29	106	208		
December	39	12	347	160	10	83	0	13

able 5.90: Total count	s of areat cres	sted arebe per s	urvev – South D	ublin Bay survey area

Source: Natural Power

5.2.7.2. Temporal variation in abundance

Monthly variation in average great crested grebe counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.14, with shading to represent one standard error.

Figure 5.14: Annual variation in average counts of great crested grebe

5.2.7.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by great crested grebe during baseline landfall surveys is shown in Figure 5.15.

5.2.8. Grey heron

5.2.8.1. Survey data

Grey heron were recorded within the Project landfall survey area in 70 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.91.

Month	Year 1: October 2019 to September 2020		Year 2: Oc to Septen	Year 2: October 2020 to September 2021		tober 2021 nber 2022	Year 4: October 2022 to March 2023	
wonth	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	0	4	3	10	0	0	0	2
February	2	0	2	4	2	2	5	1
March	0	2	1	1	1	3	0	3
April	N/A	N/A	1	1	2	2		
Мау	4	N/A	1	2	3	3		
June	2	14	6	1	3	3	N	/Δ
July	0	4	0	2	1	0	1 1/	~
August	2	16	2	13	2	1		
September	5	6	25	6	11	3		
October	2	2	2	3	3	2	3	8
November	1	1	1	4	2	5	4	3
December	3	0	2	1	4	2	3	4

Table 5.91: Total counts of grey heron per survey – South Dublin Bay survey area

Source: Natural Power

5.2.8.2. Temporal variation in abundance

Monthly variation in average grey heron counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.16, with shading to represent one standard error.

Figure 5.16: Annual variation in average counts of grey heron

5.2.8.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by grey heron during baseline landfall surveys is shown in Figure 5.16.

5.2.9. Little egret

5.2.9.1. Survey data

Little egret were recorded within the Project landfall survey area in 66 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.92.

Manth	Year 1: October 2019 to September 2020		Year 2: Oc to Septen	Year 2: October 2020 to September 2021		tober 2021 nber 2022	Year 4: October 2022 to March 2023	
WONTN	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	1	1	0	1	0	0	7	0
February	0	0	1	2	3	0	9	0
March	1	2	1	1	2	2	0	0
April	N/A	N/A	2	8	12	8		
Мау	14	N/A	7	15	6	14		
June	5	9	16	11	21	21	NI/	Δ
July	10	2	12	3	3	4	IN/	~
August	4	15	7	20	1	8		
September	19	22	50	1	90	2		
October	7	7	8	6	4	0	23	37
November	4	0	0	7	12	3	0	12
December	0	1	3	3	20	3	0	12

Table 5.92: Total counts of little egret per survey – South Dublin Bay survey area

Source: Natural Power

5.2.9.2. Temporal variation in abundance

Monthly variation in average little egret counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.18, with shading to represent one standard error.

Figure 5.18: Annual variation in average counts of little egret

5.2.9.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by little egret during baseline landfall surveys is shown in Figure 5.19.

5.2.10. Shag

5.2.10.1. Survey data

Shag were recorded within the Project landfall survey area in 71 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023March 2023. Total counts of this species on each survey are presented in Table 5.93.

	Year 1: Oc to Septen	tober 2019 nber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 nber 2022	Year 4: Oct to Marc	tober 2022 :h 2023
Month	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2
January	8	53	30	9	0	0	3	6
February	7	2	3	6	0	3	6	3
March	4	18	8	6	0	1	5	2
April	N/A	N/A	1	0	2	1		
Мау	10	N/A	3	4	3	5		
June	7	10	0	1	0	1	N	/Δ
July	1	16	0	0	5	5	1 1/	~
August	26	17	2	2	1	5		
September	36	28	5	4	3	1		
October	14	8	13	4	4	2	1	1
November	21	83	1	10	6	1	4	3
December	36	20	24	0	4	2	3	4

Table 5.93: Total counts of shag per survey – South Dublin Bay survey area

Source: Natural Power

5.2.10.2. Temporal variation in abundance

Monthly variation in average shag counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.20, with shading to represent one standard error.

Figure 5.20: Annual variation in average counts of shag

5.2.10.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by shag during baseline landfall surveys is shown in Figure 5.21.

5.2.11. **Cormorant**

5.2.11.1. Survey data

Cormorant were recorded within the Project landfall survey area in 73 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.94.

B A - mth	Year 1: Oc to Septen	tober 2019 nber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 nber 2022	Year 4: October 2022 to March 2023	
Month	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2
January	1	0	4	8	0	0	17	3
February	1	3	2	7	2	2	21	37
March	0	4	3	9	6	1	12	9
April	N/A	N/A	2	4	6	3		
Мау	0	N/A	1	5	1	3		
June	0	4	11	5	8	7	N	/Δ
July	16	6	2	10	11	2	IN/	~
August	21	16	4	26	3	4		
September	8	18	13	4	7	3		
October	12	3	15	1	7	11	2	5
November	0	5	3	8	11	16	4	11
December	2	3	16	0	4	2	18	17

Table 5.94: Total counts of cormorant per survey – South Dublin Bay survey area

Source: Natural Power

5.2.11.2. Temporal variation in abundance

Monthly variation in average cormorant counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.22, with shading to represent one standard error.

Figure 5.22: Annual variation in average counts of cormorant

5.2.11.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by cormorant during baseline landfall surveys is shown in Figure 5.23.

5.2.12. Oystercatcher

5.2.12.1. Survey data

Oystercatcher were recorded within the Project landfall survey area in 80 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.95.

	Year 1: Oc to Septen	tober 2019 1ber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 1ber 2022	Year 4: October 2022 to March 2023	
Month	Monthly	Monthly						
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	1632	1283	1612	2576	566	480	1789	2060
February	493	249	3677	548	420	269	394	600
March	654	316	934	506	118	167	1704	1163
April	N/A	N/A	185	411	306	30		
Мау	175	N/A	118	39	325	0		
June	169	395	122	217	213	27	NI/	Δ
July	419	234	100	154	83	89	IN/	~
August	364	1071	240	474	827	1195		
September	858	1240	1029	1033	984	970		
October	962	2790	1131	881	343	1072	1741	1284
November	278	930	1088	1809	2276	148	1081	1381
December	1557	714	990	870	1877	2386	1364	2497

Table 5.95: Total counts of oystercatcher per survey – South Dublin Bay survey area

Source: Natural Power

5.2.12.2. Temporal variation in abundance

Monthly variation in average oystercatcher counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.24, with shading to represent one standard error.

Figure 5.24: Annual variation in average counts of oystercatcher

5.2.12.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by oystercatcher during baseline landfall surveys is shown in Figure 5.25.

5.2.13. Golden plover

5.2.13.1. Survey data

Golden plover were recorded within the Project landfall survey area in 15 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.96.

	Year 1: Oc to Septen	tober 2019 1ber 2020	Year 2: Oc to Septen	tober 2020 1ber 2021	Year 3: Oc to Septen	tober 2021 1ber 2022	Year 4: Oct to Marc	tober 2022 :h 2023
Month	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2
January	0	0	0	26	0	0	0	0
February	0	0	72	0	0	0	0	0
March	0	0	0	0	0	0	53	140
April	N/A	N/A	0	0	0	0		
Мау	0	N/A	0	0	0	0		
June	0	0	0	0	0	0	N	Δ
July	0	0	0	0	0	0	1 1/	~
August	0	0	0	0	0	0		
September	72	140	0	0	0	86		
October	0	0	0	0	0	0	38	16
November	42	475	0	0	0	0	0	0
December	270	0	125	0	25	375	0	0

Table 5.96: Total counts of golden plover per survey – South Dublin Bay survey area

Source: Natural Power

5.2.13.2. Temporal variation in abundance

Monthly variation in average golden plover counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.26, with shading to represent one standard error.

5.2.13.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by golden plover during baseline landfall surveys is shown in Figure 5.27.

5.2.14. Grey plover

5.2.14.1. Survey data

Grey plover were recorded within the Project landfall survey area in 23 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.97.

B A o máth	Year 1: Oc to Septen	tober 2019 nber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 1ber 2022	Year 4: October 2022 to March 2023	
Month	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2
January	9	0	0	7	38	0	13	0
February	3	0	9	4	10	0	7	0
March	10	0	0	0	0	7	0	0
April	N/A	N/A	0	0	0	0		
Мау	0	N/A	0	0	0	0		
June	0	0	0	0	0	0	N	/Δ
July	0	0	0	0	0	0	1 1/	~
August	0	0	0	0	0	0		
September	15	12	0	0	0	0		
October	0	0	5	0	0	0	0	5
November	0	0	14	10	0	0	5	0
December	1	0	45	7	12	0	0	1

Table 5.97: Total counts of grey plover per survey – South Dublin Bay survey area

Source: Natural Power

5.2.14.2. Temporal variation in abundance

Monthly variation in average grey plover counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.28, with shading to represent one standard error.

Figure 5.28: Annual variation in average counts of grey plover

5.2.14.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by grey plover during baseline landfall surveys is shown in Figure 5.29.

5.2.15. Ringed plover

5.2.15.1. Survey data

Ringed plover were recorded within the Project landfall survey area in 55 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.98.

Month	Year 1: October 2019 to September 2020		Year 2: October 2020 to September 2021		Year 3: October 2021 to September 2022		Year 4: October 2022 to March 2023	
	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2
January	86	81	83	143	0	0	23	4
February	124	30	83	23	0	28	11	18
March	16	0	23	5	0	28	40	9
April	N/A	N/A	0	0	0	6		
Мау	0	N/A	0	2	0	0	N/A	
June	0	23	1	0	0	7		
July	6	0	0	0	3	1		
August	11	99	0	41	0	69		
September	0	0	127	0	77	38		
October	0	11	45	398	30	0	19	26
November	0	105	44	18	18	18	45	34
December	103	67	73	16	84	65	37	59

Table 5.98: Total counts of ringed plover per survey – South Dublin Bay survey area

Source: Natural Power

5.2.15.2. Temporal variation in abundance

Monthly variation in average ringed plover counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.30, with shading to represent one standard error.

Figure 5.30: Annual variation in average counts of ringed plover

5.2.15.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by ringed plover during baseline landfall surveys is shown in Figure 5.31.

5.2.16. Curlew

5.2.16.1. Survey data

Curlew were recorded within the Project landfall survey area in 69 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.99.

Month	Year 1: Oc to Septen	tober 2019 1ber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 nber 2022	Year 4: Oct to Marc	tober 2022 :h 2023
WORLIN	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	90	50	135	138	12	0	30	2
February	24	8	24	40	59	13	92	0
March	91	18	41	13	0	46	0	0
April	N/A	N/A	11	2	32	3		
Мау	0	N/A	0	0	1	0		
June	1	41	3	33	0	3	N/	Δ
July	93	9	34	2	23	5	11/	~
August	41	189	25	81	6	116		
September	145	166	61	2	191	60		
October	114	50	77	116	14	0	103	59
November	32	161	18	52	182	21	149	12
December	237	14	0	11	38	2	9	90

 Table 5.99: Total counts of curlew per survey – South Dublin Bay survey area

Source: Natural Power

5.2.16.2. Temporal variation in abundance

Monthly variation in average curlew counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.32, with shading to represent one standard error.

Figure 5.32: Annual variation in average counts of curlew

5.2.16.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by curlew during baseline landfall surveys is shown in Figure 5.33.

5.2.17. Bar-tailed godwit

5.2.17.1. Survey data

Black-tailed godwit were recorded within the Project landfall survey area in 63 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.100.

Block	Year 1: Oc to Septen	tober 2019 1ber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 1ber 2022	Year 4: Oct to Marc	tober 2022 h 2023
Month	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	107	161	210	373	235	0	197	100
February	8	0	475	691	246	154	108	0
March	741	20	659	47	0	101	48	84
April	N/A	N/A	6	20	71	4		
Мау	0	N/A	0	0	116	0		
June	19	0	0	0	0	0	N/	Δ
July	2	4	1	0	4	6	1 1/	~
August	42	80	109	405	3	0		
September	18	92	1164	0	94	47		
October	94	34	297	344	138	0	166	139
November	71	411	590	317	240	0	398	37
December	1260	480	625	88	339	1103	18	106

Table 5.100: Total counts of bar-tailed godwit per survey - South Dublin Bay survey area

Source: Natural Power

5.2.17.2. Temporal variation in abundance

Monthly variation in average bar-tailed godwit counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.34, with shading to represent one standard error.

Figure 5.34: Annual variation in average counts of bar-tailed godwit

5.2.17.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by bar-tailed godwit during baseline landfall surveys is shown in Figure 5.35.

5.2.18. Black-tailed godwit

5.2.18.1. Survey data

Black-tailed godwit were recorded within the Project landfall survey area in 57 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.101.

Month	Year 1: Oc to Septen	tober 2019 1ber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 1ber 2022	Year 4: Oct to Marc	tober 2022 :h 2023
Month	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	366	254	120	502	0	0	161	0
February	84	0	317	16	140	19	60	0
March	332	18	148	9	0	17	26	17
April	N/A	N/A	15	18	22	0		
Мау	13	N/A	0	0	0	0		
June	4	0	0	0	174	0	N/	'A
July	0	0	6	85	0	0		
August	0	319	40	587	0	55		
September	375	533	589	0	85	105		
October	15	8	218	198	212	0	110	84
November	31	17	34	369	94	31	60	0
December	310	6	550	22	830	89	12	34

Table 5.101: Total counts of black-tailed godwit per survey - South Dublin Bay survey area

Source: Natural Power

5.2.18.2. Temporal variation in abundance

Monthly variation in average black-tailed godwit counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.36, with shading to represent one standard error.

Figure 5.36: Annual variation in average counts of black-tailed godwit Annual variation in average counts of black-tailed godwit

5.2.18.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by blacktailed godwit during baseline landfall surveys is shown in Figure 5.37.

5.2.19. Turnstone

5.2.19.1. Survey data

Turnstone were recorded within the Project landfall survey area in 73 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.102.

March	Year 1: Oc to Septen	tober 2019 1ber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 nber 2022	Year 4: Oct to Marc	tober 2022 h 2023
Month	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	154	72	90	152	0	0	28	79
February	89	94	84	110	21	45	39	30
March	34	124	69	46	35	26	7	58
April	N/A	N/A	52	45	45	14		
Мау	16	N/A	11	8	4	0		
June	14	38	0	0	9	2	N/	Δ
July	5	0	0	2	28	4	11/	~
August	3	222	53	262	2	32		
September	59	24	110	96	54	58		
October	188	109	39	52	109	93	79	126
November	128	130	85	18	75	59	310	38
December	248	167	169	0	60	117	76	48

Table 5.102: Total counts of turnstone per survey – South Dublin Bay survey area

Source: Natural Power

5.2.19.2. Temporal variation in abundance

Monthly variation in average turnstone counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.38, with shading to represent one standard error.

Figure 5.38: Annual variation in average counts of turnstone

5.2.19.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by turnstone during baseline landfall surveys is shown in Figure 5.39.

5.2.20. Knot

5.2.20.1. Survey data

Knot were recorded within the Project landfall survey area in 36 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.103.

Month	Year 1: Oc to Septen	tober 2019 1ber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 nber 2022	Year 4: Oct to Marc	tober 2022 :h 2023
WORLIN	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	100	96	650	45	0	679	30	6600
February	0	0	5716	690	0	0	4	1000
March	13	0	5700	178	0	0	0	230
April	N/A	N/A	0	0	0	0		
Мау	0	N/A	0	0	0	0		
June	0	0	0	0	0	0	N	/Δ
July	0	0	0	0	0	0	1 1/	~
August	0	0	0	0	0	0		
September	99	158	82	0	0	193		
October	0	0	1077	8590	382	0	0	92
November	22	118	4500	2756	0	0	624	400
December	310	583	8500	0	1073	10890	275	343

Table 5.103: Total counts of knot per survey – South Dublin Bay survey area

Source: Natural Power

5.2.20.2. Temporal variation in abundance

Monthly variation in average knot counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.40, with shading to represent one standard error.

Figure 5.40 Annual variation in average counts of knot

5.2.20.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by knot during baseline landfall surveys is shown in Figure 5.41.

5.2.21. Sanderling

5.2.21.1. Survey data

Sanderling were recorded within the Project landfall survey area in 47 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.104.

M - with	Year 1: Oc to Septen	tober 2019 nber 2020	Year 2: Oc to Septen	Year 2: October 2020 to September 2021		Year 3: October 2021 to September 2022		Year 4: October 2022 to March 2023	
Month	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	
January	269	156	46	241	0	0	60	0	
February	20	21	38	15	54	11	143	0	
March	23	0	42	0	0	36	60	18	
April	N/A	N/A	0	0	39	21			
Мау	11	N/A	0	0	0	0			
June	6	0	0	0	0	0	N	Δ	
July	0	0	0	0	0	0	1 1/	~	
August	0	0	0	0	0	19			
September	95	144	57	0	103	49			
October	0	40	0	147	18	0	0	16	
November	156	11	14	86	100	3	226	293	
December	328	408	141	78	156	88	40	152	

Table 5.104: Total counts of sanderling per survey – South Dublin Bay survey area

Source: Natural Power

5.2.21.2. Temporal variation in abundance

Monthly variation in average sanderling counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.42, with shading to represent one standard error.

Figure 5.42: Annual variation in average counts of sanderling

5.2.21.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by sanderling during baseline landfall surveys is shown in Figure 5.43.

5.2.22. **Dunlin**

5.2.22.1. Survey data

Dunlin were recorded within the Project landfall survey area in 57 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.105.

Month	Year 1: Oc to Septen	tober 2019 1ber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 nber 2022	Year 4: Oct to Marc	tober 2022 h 2023
WORTH	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	1529	1518	850	1483	1880	0	2018	3081
February	1092	12	5495	415	1037	1216	320	0
March	1095	31	478	19	0	600	373	162
April	N/A	N/A	0	0	0	0		
Мау	7	N/A	17	0	0	0		
June	0	0	0	0	0	0	N/	Δ
July	0	0	0	0	0	0	11/	~
August	294	222	38	422	0	208		
September	34	730	324	18	352	415		
October	101	145	296	1010	228	42	211	296
November	81	665	2004	2820	184	0	2475	909
December	1084	112	1700	2000	589	2363	73	1164

Table 5.105: Total counts of dunlin per survey – South Dublin Bay survey area

Source: Natural Power

5.2.22.2. Temporal variation in abundance

Monthly variation in average dunlin counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.44, with shading to represent one standard error.

Figure 5.44 Annual variation in average counts of dunlin

5.2.22.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by dunlin during baseline landfall surveys is shown in Figure 5.45.

5.2.23. Redshank

5.2.23.1. Survey data

Redshank were recorded within the Project landfall survey area in 68 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.106.

Manth	Year 1: Oc to Septen	tober 2019 1ber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 1ber 2022	Year 4: Oct to Marc	tober 2022 h 2023
wonth	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	709	585	31	463	113	0	157	14
February	227	49	365	114	68	25	241	13
March	396	44	252	205	26	103	0	27
April	N/A	N/A	0	44	58	26		
Мау	9	N/A	0	0	0	0		
June	4	17	4	0	0	0	N/	Δ
July	0	5	4	0	21	0	11/	~
August	2	207	13	115	31	9		
September	64	407	367	12	462	49		
October	553	72	299	308	1337	208	459	277
November	154	301	57	451	301	23	235	145
December	346	103	234	77	385	498	317	206

Table 5.106: Total counts of redshank per survey – South Dublin Bay survey area

Source: Natural Power

5.2.23.2. Temporal variation in abundance

Monthly variation in average redshank counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.46, with shading to represent one standard error.

Figure 5.46: Annual variation in average counts of redshank

5.2.23.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by redshank during baseline landfall surveys is shown in Figure 5.47.

5.2.24. Greenshank

5.2.24.1. Survey data

Greenshank were recorded within the Project landfall survey area in 39 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.107.

	Year 1: Oc	tober 2019	Year 2: Oc	tober 2020	Year 3: Oc	tober 2021	Year 4: Oc	tober 2022
Month	to Septen	nber 2020	to Septen	nber 2021	to Septen	nber 2022	to Marc	:h 2023
	Monthly							
	survey 1	survey 2						
January	8	8	0	4	3	0	109	0
February	1	0	4	3	4	5	5	0
March	8	1	6	5	0	1	0	0
April	N/A	N/A	0	0	5	0		
9	0	N/A	0	0	0	0		
June	0	3	0	0	0	0	N	(Λ
July	0	0	0	0	0	0	11/	~
August	0	4	0	8	0	0		
September	0	10	21	0	18	0		
October	12	0	0	9	9	2	9	14
November	1	6	0	8	3	0	12	0
December	7	0	0	5	4	5	0	12

Table 5.107: Total counts of greenshank per survey - South Dublin Bay survey area

Source: Natural Power

5.2.24.2. Temporal variation in abundance

Monthly variation in average greenshank counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.48, with shading to represent one standard error.

Figure 5.48: Annual variation in average counts of greenshank

5.2.24.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by greenshank during baseline landfall surveys is shown in Figure 5.49.

5.2.25. Black-headed gull

5.2.25.1. Survey data

Black-headed gull were recorded within the Project landfall survey area in 80 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.108.

B/ a m/ h	Year 1: Oc to Septen	tober 2019 1ber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 1ber 2022	Year 4: Oct to Marc	tober 2022 h 2023
wonth	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	2249	1857	138	1365	558	167	1828	114
February	1648	419	471	517	462	1044	1491	1039
March	2460	387	390	211	160	548	1504	899
April	N/A	N/A	0	14	98	62		
Мау	50	N/A	7	2	4	2		
June	196	620	50	513	591	144	N/	Δ
July	801	418	649	361	2128	314	1 1/	~
August	323	1671	642	1173	386	950		
September	613	1237	3826	289	718	406		
October	3192	575	1052	1418	418	217	850	448
November	658	771	467	1125	841	143	873	397
December	1172	697	186	548	791	644	310	2040

Table 5.108: Total counts of black-headed gull per survey – South Dublin Bay survey area

Source: Natural Power

5.2.25.2. Temporal variation in abundance

Monthly variation in average black-headed gull counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.50, with shading to represent one standard error.

Figure 5.50: Annual variation in average counts of black-headed gull

5.2.25.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by blackheaded gull during baseline landfall surveys is shown in Figure 5.51.

5.2.26. Mediterranean gull

5.2.26.1. Survey data

Mediterranean gull were recorded within the Project landfall survey area in 55 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.109.

Month	Year 1: Oc to Septen	tober 2019 1ber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 1ber 2022	Year 4: Oct to Marc	tober 2022 h 2023
MONT	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	10	33	1	0	0	0	2	1
February	0	1	2	2	1	1	4	0
March	7	16	5	3	0	0	0	2
April	N/A	N/A	0	0	4	0		
Мау	21	N/A	0	0	1	0		
June	23	51	3	45	21	0	N/	Δ
July	87	30	13	67	41	4	1 1/	~
August	56	72	29	50	52	20		
September	23	24	12	0	41	2		
October	54	5	1	1	4	0	6	29
November	3	6	6	0	0	1	2	0
December	4	19	0	0	0	0	0	4

Table 5.109: Total counts of Mediterranean gull per survey – South Dublin Bay survey area

Source: Natural Power

5.2.26.2. Temporal variation in abundance

Monthly variation in average Mediterranean gull counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.52, with shading to represent one standard error.

Figure 5.52 Annual variation in average counts of Mediterranean gull

5.2.26.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by Mediterranean gull during baseline landfall surveys is shown in Figure 5.53.

286,800

289,000

291,200

5.2.27. Common gull

5.2.27.1. Survey data

Common gull were recorded within the Project landfall survey area in 78 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.110.

	Year 1: Oc to Septen	tober 2019 nber 2020	Year 2: Oc to Septen	Year 2: October 2020 to September 2021		Year 3: October 2021 to September 2022		Year 4: October 2022 to March 2023	
Month	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	
January	101	81	15	133	6	0	213	7	
February	13	28	33	85	27	64	302	164	
March	207	53	57	59	11	43	389	29	
April	N/A	N/A	46	13	27	1			
Мау	3	N/A	2	1	1	2			
June	3	25	5	8	7	4	N	/Δ	
July	0	4	7	3	45	10	11/	~	
August	7	77	8	58	26	65			
September	0	57	40	14	49	39			
October	220	20	13	127	11	66	51	113	
November	23	83	9	24	28	31	57	44	
December	53	156	11	88	142	27	114	512	

Table 5.110: Total counts of common gull per survey – South Dublin Bay survey area

Source: Natural Power

5.2.27.2. Temporal variation in abundance

Monthly variation in average common gull counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.54, with shading to represent one standard error.

Figure 5.54 Annual variation in average counts of common gull

5.2.27.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by common gull during baseline landfall surveys is shown in Figure 5.55.

5.2.28. Great black-backed gull

5.2.28.1. Survey data

Great black-backed gull were recorded within the Project landfall survey area in 76 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.111.

Month	Year 1: Oc to Septen	tober 2019 nber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 1ber 2022	Year 4: Oct to Marc	tober 2022 :h 2023
WORTH	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	85	52	8	44	0	0	83	0
February	9	3	5	21	41	17	25	13
March	10	14	23	11	20	31	11	18
April	N/A	N/A	2	36	49	8		
Мау	4	N/A	6	10	35	6		
June	32	109	27	41	8	74	N/	Δ
July	22	5	7	3	19	0	1 1/	~
August	29	227	28	99	39	50		
September	47	100	80	23	84	17		
October	241	28	19	130	4	10	65	113
November	9	30	5	3	27	17	59	30
December	32	7	9	0	87	10	17	61

Table 5.111: Total counts of great black-backed gull per survey - South Dublin Bay survey area

Source: Natural Power

5.2.28.2. Temporal variation in abundance

Monthly variation in average great black-backed gull counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.56, with shading to represent one standard error.

Figure 5.56 Annual variation in average counts of great black-backed gull

5.2.28.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by great black-backed gull during baseline landfall surveys is shown in Figure 5.57.

291,200

5.2.29. Herring gull

5.2.29.1. Survey data

Herring gull were recorded within the Project landfall survey area in 79 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.112.

Bill o se dia	Year 1: Oc to Septen	tober 2019 1ber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 1ber 2022	Year 4: Oct to Marc	tober 2022 h 2023
Month	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2
January	421	442	39	431	33	0	250	1
February	106	73	289	1089	149	71	179	66
March	109	150	311	154	44	280	92	70
April	N/A	N/A	43	296	271	119		
Мау	145	N/A	14	116	501	240		
June	184	687	524	539	344	487	NI/	Δ
July	219	152	315	113	562	111	1 1/	~
August	379	2058	146	499	244	553		
September	23	24	940	437	156	104		
October	5646	132	148	1323	114	66	836	609
November	30	119	69	91	236	80	353	77
December	247	57	29	0	341	45	60	263

Table 5.112: Total counts of herring gull per survey – South Dublin Bay survey area

Source: Natural Power

5.2.29.2. Temporal variation in abundance

Monthly variation in average herring gull counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.58, with shading to represent one standard error.

Figure 5.58: Annual variation in average counts of herring gull

5.2.29.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by herring gull during baseline landfall surveys is shown in Figure 5.59.

5.2.30. Lesser black-backed gull

5.2.30.1. Survey data

Lesser black-backed gull were recorded within the Project landfall survey area in 61 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.113.

Month	Year 1: Oc to Septen	tober 2019 nber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 nber 2022	Year 4: Oct to Marc	tober 2022 h 2023
wonth	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2	survey 1	survey 2
January	1	1	0	4	3	0	3	0
February	0	19	1	24	6	2	3	0
March	14	4	18	11	0	11	2	4
April	N/A	N/A	5	28	6	6		
Мау	3	N/A	0	10	12	6		
June	6	40	26	67	24	13	N	Δ
July	9	7	46	2	5	3	11/	~
August	22	150	43	81	12	93		
September	23	24	28	2	16	1		
October	48	0	0	4	0	2	1	3
November	0	1	0	1	1	1	0	0
December	15	0	0	0	2	0	0	2

Table 5.113: Total counts of lesser black-backed gull per survey – South Dublin Bay survey area

Source: Natural Power

5.2.30.2. Temporal variation in abundance

Monthly variation in average lesser black-backed gull counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.60, with shading to represent one standard error.

Figure 5.60 Annual variation in average counts of lesser black-backed gull

5.2.30.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by lesser black-backed gull during baseline landfall surveys is shown in Figure 5.61.

5.2.31. Sandwich tern

5.2.31.1. Survey data

Sandwich tern were recorded within the Project landfall survey area in 28 of the diurnal 81 intertidal landfall surveys undertaken between October 2019 and March 2023and six of the eight intertidal roosting tern surveys during mid-July to mid-September in 2020 and 2021. Total counts of this species on each survey are presented in Table 5.114.

Month	Yea to	r 1: Oc Septen	tober 2 nber 20	2019 020	Year S	2: Octo eptem	ober 20 ber 202)20 to 21	Year 3: Oc to Septer	tober 2021 nber 2022	Year 4: Oc to Marc	tober 2022 ch 2023
MOILIN	Diu	rnal	Ro	ost	Diu	rnal	Ro	ost	Diurnal	Roost	Diurnal	Roost
	surv	veys	surv	/eys	surv	/eys	surv	veys	surveys	surveys	surveys	surveys
	V1	V2	V1	V2	V1	V2	V1	V2	Visit 1	Visit 2	Visit 1	Visit 2
January	0	0			0	0			0	0	0	0
February	0	0			0	0			0	0	0	0
March	0	13			0	0			0	0	0	0
April	N/A	N/A			172	53			0	14		
Мау	0	N/A			0	2			2	0		
June	0	13			0	20			9	11	N	/^
July	4	51	106		6	22	0		14	3	IN/	
August	168	89	210	307	84	231	462	0	42	174		
September	23	24	22		7	0	7		1	53		
October	0	0			0	0			0	0	38	0
November	0	0			0	0			0	0	0	0
December	0	0			0	0			0	0	0	0

Table 5 114 · T	otal counts	of Sandwich	tern ner	survey - Sout	h Dublin Bay		area
Table J.114. 1	otal counts	of Sanuwich	tern her	survey – Sout	n Dubini Dag	y survey (area

Source: Natural Power

5.2.31.2. Temporal variation in abundance

Monthly variation in average Sandwich tern counts within the Project landfall survey area during baseline diurnal landfall surveys is shown in Figure 5.62, with shading to represent one standard error.

Figure 5.62: Annual variation in average counts of Sandwich tern (shading represents +/- one standard error)

Monthly variation in average Sandwich tern counts within the Project landfall survey area during intertidal roosting tern surveys is shown in Figure 5.63, with shading to represent one standard error.

Figure 5.63 Variation in average counts of Sandwich tern during roosting tern surveys

5.2.31.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by Sandwich tern during baseline diurnal landfall surveys is shown in Figure 5.64. Areas were utilised within the Project landfall survey area by roosting Sandwich tern during intertidal roosting tern surveys are shown in Figure 5.65.

286,000

E	5,915,000		50 km		OpenS nd), con	SteetMap	5		53°N
	5,912,500		egend Plann Offshualignn Ost-breed Sterna Sandu Sterna	ing Applica ore export of nent ling tern ro a tern wich tern a and sand	tion cabl cabl	Boundar e e – alterr t ing loca n tern	y (P	AB) e s	
and the second second	5,910,000	CO VV IOCCA CWP Interna Rev. 00	dling nd park Distributions reco 22) relativ doc. number: al descriptive ac strend software of the arterio software of the Final for issue	Project: Codling Wind Figur on of post-to orded durin e to intertic CWP-NPC-EI	d Par e 5. Dree g ba lal c Size: Scale	k Contract www.natur 65 ding term aseline si able rout 3-01-MAP-16 A3 : 1:25,000 Date 2024/08/15	or: alpower, l roo: e sc age gg2 CRS By AC	sting ys (2 enari	021 003 0 Appt CP

5.2.32. Common, Arctic and roseate terns (Sterna sp. terns)

5.2.32.1. Survey data

Terns belonging to the *Sterna* genus (i.e. common, Arctic and roseate) were recorded within the Project landfall survey area in 23 of the 81 diurnal intertidal landfall surveys undertaken between October 2019 and March 2023 and all of the eight intertidal roosting tern surveys during mid-July to mid-September in 2020 and 2021. Total counts of this species group on each survey are presented in Table 5.115.

Month	Yea to	r 1: Oc Septen	tober 2 nber 20	2019 020	Year S	2: Octo	ober 20 ber 202	20 to 21	Year 3: Oc to Septer	tober 2021 nber 2022	Year 4: October 2022 to March 2023	
WORKI	Diu	rnal	Ro	ost	Diu	rnal	Ro	ost	Diurnal	Roost	Diurnal	Roost
	sur	/eys	sur	veys	surv	veys	surv	veys	surveys	surveys	surveys	surveys
	V1	V2	V1	V2	V1	V2	V1	V2	Visit 1	Visit 2	Visit 1	Visit 2
January	0	0			0	0			0	0	0	0
February	0	0			0	0			0	0	0	0
March	0	0			0	0			0	0	0	0
April					0	2			0	11		
Мау	0				19	14			0	16		
June	0	0			0	4			6	23		
July	15	497	963		9	97	1,5 12		52	44	N	/A
August	265	19	1756	889	104	142	2770	4686	95	124		
September	64	8	31		0	0	796		0	0		
October	0	0			0	0			0	0	1	0
November	0	0			0	0			0	0	0	0
December	0	0			0	0			0	0	0	0

Table 5.115: Total counts of common, Arctic and roseate tern per survey - South Dublin Bay survey area

Source: Natural Power

5.2.32.2. Temporal variation in abundance

Monthly variation in average *Sterna* tern counts within the Project landfall survey area during baseline diurnal landfall surveys is shown in Figure 5.66, with shading to represent one standard error.

Figure 5.66 Annual variation in average counts of Sterna terns

Monthly variation in average *Sterna* tern counts within the Project landfall survey area during intertidal roosting tern surveys is shown in Figure 5.67, with shading to represent one standard error.

Figure 5.67: Variation in average counts of Sterna terns during roosting tern surveys

5.2.32.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by *Sterna* terns during baseline diurnal landfall surveys is shown in Figure 5.68. Areas which were utilised within the Project landfall survey area by roosting *Sterna* terns during intertidal roosting tern surveys are shown in Figure 5.65.

5.2.33. Black guillemot

5.2.33.1. Survey data

Black guillemot were recorded within the Project landfall survey area in 62 of the 81 intertidal landfall surveys undertaken between October 2019 and March 2023. Total counts of this species on each survey are presented in Table 5.116.

	Year 1: Oc to Septen	tober 2019 nber 2020	Year 2: Oc to Septen	tober 2020 nber 2021	Year 3: Oc to Septen	tober 2021 nber 2022	Year 4: Oct to Marc	tober 2022 :h 2023
Month	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2	Monthly survey 1	Monthly survey 2
January	2	0	32	2	0	0	0	4
February	2	8	4	2	6	8	9	4
March	4	12	4	6	1	7	2	2
April	N/A	N/A	2	4	0	3		
Мау	7	N/A	5	6	6	6		
June	6	0	10	1	4	5	N	/Δ
July	4	5	0	4	7	3	1 1/	~
August	18	6	8	4	4	2		
September	23	24	0	4	4	0		
October	0	14	0	0	7	4	2	3
November	6	4	2	0	3	4	10	0
December	4	4	2	0	0	6	0	0

Table 5.116: Total counts of black guillemot per survey – South Dublin Bay survey area

Source: Natural Power

5.2.33.2. Temporal variation in abundance

Monthly variation in average black guillemot counts within the Project landfall survey area during baseline landfall surveys is shown in Figure 5.69: Annual variation in average counts of black guillemot, with shading to represent one standard error.

Figure 5.69: Annual variation in average counts of black guillemot

5.2.33.3. Spatial variation in site use

Spatial variation in the proportion of time that areas were utilised within the Project landfall survey area by black guillemot during baseline landfall surveys is shown in Figure 5.70.

6. References

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., & Thomas, L. (2001). *Introduction to distance sampling: estimating abundance of biological populations*. Oxford university press.

Burke, B. & Crowe, O. (2016). Post-breeding Tern Report 2016: Assessment of Numbers and Distribution of Postbreeding Terns at a Selection of East and South Coast Wetlands in August & September 2016. BirdWatch Ireland I-WeBS Team Report. BirdWatch Ireland, Wicklow.

Burke, B., Fitzgerald, N.& Lewis, L.J. (2017). Post-breeding Tern Report 2017: Assessment of Numbers and Distribution of Post-breeding Terns at Irish Coastal Wetlands in August & September 2017. BirdWatch Ireland I-WeBS Team Report. BirdWatch Ireland, Wicklow.

Burke, B., Lewis, L. J., Fitzgerald, N., Frost, T., Austin, G., & Tierney, T. D. (2018). Estimates of waterbird numbers wintering in Ireland, 2011/12–2015/16. *Irish Birds*, *11*, 1-12.

Burke, B., Fitzgerald, N., Boland, H., Murray, T., Gittings, T., & Tierney, T. D. (2020). Results from the first three years of monitoring post-breeding tern aggregations in Ireland. *Irish Birds*, *42*, 35-44.

Cabot, D., & Nisbet, I. (2013). Terns.

Camphuysen, C. J., Fox, A. D., Leopold, M. F., & Petersen, I. K. (2004). Towards Standardised Seabirds at Sea Census Techniques in Connection with Environmental Impact Assessments for Offshore Wind Farms in the UK: a comparison of ship and aerial sampling methods for marine birds and their applicability to offshore wind farm assessments.

Simmons, K. E. (1977). Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Palearctic. 1. Ostrich to ducks. Oxford University Press.

DCCAE (2018). Guidance on Marine Baseline Ecological Assessments & Monitoring Activities for Offshore Renewable Energy Projects. Department of Communications, Climate Action & Environment.

Furness, R. W. (2015). Density dependence in seabirds: Great Skuas Stercorarius skua start to breed at a younger age when conditions are better. *Ringing & Migration*, *30*(1), 43-50.

Ginn, H. B., & Melville, D. S. (1983). Moult in birds. BTO Guide 19. British Trust for Ornithology, Tring, 796.

The Irish Wetland Bird Survey (I-WeBS). Accessed: February 2023. Retrieved from: https://c0amf055.caspio.com/

Jessop M, Mackey M, Luck C, Critchley E, Bennison A & Rogan E (2018). The seasonal distribution and abundance of seabirds in the western Irish Sea. Department of Communications, Climate Action and Environment, and National Parks & Wildlife Service, Department of Culture, Heritage & the Gaeltacht, Ireland. 90pp

Lewis, L. J. & Tierney, T. D. (2014). Low tide waterbird surveys: survey methods and guidance notes. Irish Wildlife Manuals, No. 80. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht, Ireland.

Maclean, I. M. D., Wright, L. J., Showler, D. A., & Rehfisch, M. M. (2009). A review of assessment methodologies for offshore windfarms.

Merne, O. J., Madden, B., Archer, E., & Porter, B. (2008). Autumn roosting by terns in south Dublin Bay. *Irish Birds*, *8*, 335-340.

Merne, O.J. (2010). Terns roosting in Dublin Bay, autumn 2010. Irish Birds 9: 126-128.

NPWS (2015). Conservation Objectives: South Dublin Bay and River Tolka Estuary SPA 004024. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht.

Robinson, R. A. (2005). BirdFacts: profiles of birds occurring in Britain & Ireland. *BTO Research Report, 407,* Thetford.

Royal Haskoning DHV (2019). East Anglia ONE North Offshore Windfarm: Environmental Statement Volume 3 - Appendix 12.3 Supplementary Information for the Cumulative Assessment (No. 6.3.12.3).

Spencer, S. M. (2012). Diving behaviour and identification of sex of breeding Atlantic puffins (Fratercula arctica), and nest-site characteristics of alcids on Petit Manan Island, Maine.

Thaxter, C. B., Wanless, S., Daunt, F., Harris, M. P., Benvenuti, S., Watanuki, Y., ... & Hamer, K. C. (2010). Influence of wing loading on the trade-off between pursuit-diving and flight in common guillemots and razorbills. *Journal of Experimental Biology*, *213*(7), 1018-1025.

Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., ... & Burnham, K. P. (2010). Distance software: design and analysis of distance sampling surveys for estimating population size. *Journal of Applied Ecology*, *47*(1), 5-14.

Tierney, N., Whelan, R., & Valentín, A. (2016). Post-breeding aggregations of roosting terns in south Dublin Bay in late summer. *Irish Birds*, *10*, 339-344.

Winiarski, K. J., Miller, D. L., Paton, P. W., & McWilliams, S. R. (2014). A spatial conservation prioritization approach for protecting marine birds given proposed offshore wind energy development. *Biological Conservation*, *169*, 79-88.

Appendices

A. Apportionment proportions used to assign records not identified to species level

A.1. Apportionment proportions used to assign DAS records not identified to species level

Species	0	Bree	ding	Non-br	eeding
grouping	Species –	Flight	Sea	Flight	Sea
	Arctic tern	0.29	0.29	0.07	0.00
Arctic/common tern	Common tern	0.71	0.71	0.93	1.00
	Guillemot	0.46	0.73	0.68	0.67
Auk/shearwater	Razorbill	0.05	0.20	0.23	0.31
species	Puffin	0.04	0.00	0.00	0.01
	Manx shearwater	0.45	0.06	0.09	0.02
	Guillemot	0.35	0.76	0.23	0.62
	Razorbill	0.04	0.21	0.08	0.29
	Puffin	0.03	0.00	0.00	0.00
Auk/small gull	Black-headed gull	0.00	0.00	0.01	0.00
	Common gull	0.00	0.00	0.03	0.00
	Kittiwake	0.58	0.03	0.64	0.08
	Little gull	0.00	0.00	0.02	0.00
	Guillemot	0.84	0.78	0.75	0.68
Auk species	Razorbill	0.09	0.21	0.25	0.32
	Puffin	0.07	0.00	0.00	0.01
Cormorant/abog	Cormorant	1.00	0.00	0.00	0.31
Cormorant/snag	Shag	0.00	1.00	1.00	0.69
Diverenceios	Great northern diver	0.00	0.25	0.00	0.05
Diver species	Red-throated diver	0.00	0.75	1.00	0.95
	Fulmar	0.03	0.02	0.00	0.01
	Herring gull	0.14	0.15	0.03	0.12
	Great black-backed gull	0.02	0.04	0.01	0.06
Fulmer/gull encoice	Lesser black-backed gull	0.01	0.00	0.00	0.00
Fulmar/guil species	Kittiwake	0.80	0.78	0.89	0.79
	Black-headed gull	0.00	0.00	0.01	0.00
	Common gull	0.01	0.00	0.04	0.00
	Little gull	0.00	0.00	0.03	0.01
	Herring gull	0.14	0.14	0.03	0.12
	Great black-backed gull	0.02	0.04	0.01	0.06
	Lesser black-backed gull	0.01	0.00	0.00	0.00
	Kittiwake	0.83	0.81	0.89	0.80

Table A.1: Apportionment proportions used to assign DAS records not identified to species level

Species	Species	Bree	ding	Non-bro	eeding
grouping	Species	Flight	Sea	Flight	Sea
	Black-headed gull	0.00	0.00	0.01	0.00
Gull species	Common gull	0.01	0.00	0.04	0.00
	Little gull	0.00	0.00	0.03	0.01
	Guillemot	0.91	0.79	0.75	0.68
Large auk	Razorbill	0.09	0.21	0.25	0.32

Source: Natural Power

A.2. Apportionment proportions used to assign boat-based records not identified to species level

Species grouping	Spacias	Breedin	g 2019	Breedin	g 2020	Winter	2018	Winter 2019	
species grouping	opecies	Flight	Sea	Flight	Sea	Flight	Sea	Flight	Sea
Arctic/common tern	Arctic tern	0.00	0.05	0.40	0.21	-	-	0.06	0.00
	Common tern	1.00	0.95	0.60	0.79	-	-	0.94	1.00
	Arctic tern	0.00	0.04	0.37	0.19	-	-	0.06	0.00
Arctic/common/	Common tern	1.00	0.91	0.57	0.68	-	-	0.90	0.71
Toseale lenn	Roseate tern	0.00	0.04	0.06	0.13	-	-	0.05	0.29
Guillemot/razorbill	Guillemot	0.88	0.75	0.64	0.47	0.84	0.73	0.86	0.82
	Razorbill	0.12	0.25	0.36	0.53	0.16	0.27	0.14	0.18

 Table A.2: Apportionment proportions used to assign boat-based records not identified to species level

Source: Natural Power

B. Colonies within mean-maximum foraging range plus 1 standard deviation of array site, which were used to define regional breeding populations

of array site			
	Distance from array		
Colony name	site (km)	Count date	Count (ind)
WICKLOW HEAD	11.24	2023	1,290
BRAY HEAD	17.49	2015	1,746
HOWTH HEAD	29.97	2018	3,546
IRELAND'S EYE	33.97	2015	802
LAMBAY	43.14	2015	6,640
ROCKABILL	49.66	2021	330
BARDSEY ISLAND	73.25	2019	242
SOUTH STACK CLIFFS RSPB	78.21	2021	20
CARREG Y LLAM	86.31	2021	1,228
PENYMYNYDD	90.01	2016	0
TRWYN CILIAN	90.01	2016	56
MURIAN	93.84	2016	0
PORTH CEIRIAD WEST	93.84	2016	0
PORTH CEIRIAD EAST	94.25	2016	0
TRWYN YR WYLFA 2	95.67	2016	0
TRWYN YR WYLFA 1	96.67	2016	0
ST TUDWAL'S ISLAND WEST	96.67	2016	0
ST TUDWAL'S ISLAND EAST	97.08	2016	620
MIDDLE MOUDE	100.25	2016	0
LYNAS TO FRESHWATER BAY	111.08	2016	0
FRESHWATER BAY	111.08	2016	0
MAGGY'S LEAP 1/DONNARD COVE	116.00	2017	152
MAGGY'S LEAP TO NEWCASTLE 1	116.00	2019	1,160
YNYS MOELFRE	119.74	2016	312
GREAT SALTEE ISLAND	126.05	2015	2,076
CALF OF MAN	127.58	2013	26
NEW QUAY HEAD	128.04	2018	664

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
PORT ST MARY -	130.65	2017	1,106
SOUND			
RAMSEY ISLAND RSPB	134.87	2022	92
GUNS ISLAND	135.70	2012	0
GREAT ORME	142.23	2021	1,796
LITTLE ORME	148.64	2021	648
ARDNAMULT	149.64	2018	52
SKOMER	150.53	2022	3,088
DUNMORE EAST TO RED HEAD	151.23	2018	802
PORTALLY TO BENLEA HEAD	156.05	2018	200
RAMSEY - PORT MOOAR	172.08	2017	156
PORT MONA	190.68	2021	50
HELVICK HEAD 1	190.88	2018	130
LYTHE MEAD TO CARRICK-KEE	191.17	2015	678
MULL OF GALLOWAY RSPB	191.17	2022	188
ST MARGARETS ISLAND	199.05	2022	452
BIG SCAR	199.31	2022	104
ST BEES HEAD	206.48	2022	1,144
BURROW HEAD	206.59	2020	0
GOBBINS	208.05	2019	2,290
RAM HEAD	208.44	2018	452
MUCK ISLAND	209.47	2019	1,038
ANTRIM	216.71	2021	544
MEIKLE ROSS	225.88	2021	0
WEST GLAMORGAN	229.47	2018	202
LUNDY	233.10	2021	568
FAIR HEAD	248.92	2016	0
AILSA CRAIG	251.54	2021	980
SANDA ISLANDS	252.50	2021	66
RATHLIN ISLAND	265.82	2021	27,412
OLD HEAD OF KINSALE	282.69	2015	1,442
NORTH CORNWALL COAST	290.15	2019	690

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
Total breeding adults			67,280

Table 6.2:Great black-backed gull colonies within mean-maximum forging range (73km – Woodward *et al.*,
2019 – no S.D. value) of array site

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
WICKLOW HEAD	11.24	2019	2
BRAY HEAD	17.49	2010	2
DALKEY ISLANDS SPA	22.21	2016	120
IRELAND'S EYE	33.97	2015	308
LAMBAY	43.14	2015	360
SKERRIES ISLANDS	55.38	2010	190
Total breeding adults			982

Table 6.3:Herring gull colonies within mean-maximum forging range + 1 SD (85.6 km – Woodward et al.,
2019) of array site

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
WICKLOW HEAD	11.24	2023	28
BRAY HEAD	17.49	2015	4
BRAY TOWN	17.49	2021	124
HOWTH HEAD COAST	29.97	2015	18
IRELAND'S EYE	33.97	2015	636
DUBLIN CITY SOUTH	34.11	2021	36
HOWTH	34.97	2021	920
LAMBAY ISLAND SPA	41.73	2015	1,812
SKERRIES ISLAND SPA	53.38	2010	20
SKERRIES TOWN	55.80	2021	498
BALBRIGGAN TOWN	62.46	2021	2,970
BARDSEY ISLAND	73.25	2018	834
SOUTH STACK CLIFFS	78.21	2021	152
RSPB			
DROGHEDA	78.53	2021	720
(ABERDARON COAST	79.43	2018	330
NOT IN SPA)			
Total breeding adults			9,102

 Table B.4:
 Lesser black-backed gull colonies within mean-maximum forging range + 1 SD (236 km – Woodward *et al.*, 2019) of array site

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
DALKEY ISLAND	21.21	2016	70
IRELAND'S EYE	33.97	2015	4
LAMBAY (CUMMINS <i>ET</i> <i>AL.</i> , 2019)	43.14	2018	690
BALBRIGGAN TOWN	62.46	2021	20
BARDSEY ISLAND	73.25	2019	328
SOUTH STACK CLIFFS RSPB	78.21	2022	8
DROGHEDA	78.53	2021	48
YNYS PIOD	79.43	2016	0
PORTH DIANA	79.80	2016	12
RHOSCOLYN BEACON	80.14	2016	12
YNYS TRAWS	80.14	2016	28
TRWYN PENRHYN	80.43	2016	0
VALLEY WETLANDS RSPB	83.14	2019	2
BODORGAN HEAD	85.83	2018	6
THE SKERRIES RSPB	88.84	2022	244
ST TUDWAL'S ISLAND WEST	96.67	2016	76
ST TUDWAL'S ISLAND EAST	97.08	2016	12
CAERNARFON (URBAN)	97.41	2019	34
MIDDLE MOUSE	100.25	2016	6
LYNAS TO FRESHWATER BAY	111.08	2016	0
FURNESS GENERAL HOSPITAL	113.50	2019	18
YNYS MOELFRE	119.74	2016	8
CRAIG YR ADERYN	125.98	2018	14
GREAT SALTEE (CUMMINS ET AL., 2019)	126.05	2018	502
CWTA ABER (INCL. YNYS MEICEL & ONNEN)	126.15	2018	22
MAENMELYN (INCL. PEN BRUSH ISLAND)	126.74	2018	16

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
CEMAES HEAD/POPPIT	127.10	2018	34
CARDIGAN ISLAND	127.34	2019	646
CALF OF MAN	127.58	2017	54
ABERPORTH 4	128.65	2018	0
PWLL DERI (INCL.	129.15	2018	42
YNYS: DDU, Y DINAS & MELYN)			
BISHOPS & CLERKS ISLANDS RSPB	130.04	2018	48
LLYN TRWSFYNYDD RESE	130.05	2018	158
CEIBWR2	130.27	2018	10
LLANGRANNOG 1	130.55	2018	0
YNYS BARRY - TREFIN	130.84	2017	10
E.OF ABER YW - ABER MAWR	131.08	2018	0
CASTELL COCH	131.60	2018	8
RAMSEY ISLAND	134.87	2018	200
RAMSEY ISLAND RSPB	134.87	2018	200
STRANGFORD LOUGH	137.11	2022	678
CARREG YR ESGOB	137.53	2018	38
PORTHLYSGI	137.53	2018	16
PENPLEIDAU	140.53	2018	12
KILLARD POINT	141.36	2022	20
GRASSHOLM	143.31	2018	76
GOAT ISLAND	143.65	2016	1
GREENSCAR	144.94	2018	78
BANGOR BUILDINGS (URBAN)	144.95	2019	0
CONWY TOWN (URBAN)	145.30	2019	0
CONWY RSPB	145.88	2019	2
LLANDUDNO TOWN (URBAN)	147.64	2019	4
PEEL - GLEN MOOAR	150.48	2017	2
SKOMER	150.53	2022	14,524
STACK ROCKS	150.84	2018	30
MIDLAND ISLAND (MIDDLEHOLM)	152.36	2022	10
SKOKHOLM	155.53	2022	1,666

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
WEST QUARRY	159.30	2017	6
PORT MOOAR -	164.84	2017	2
DHOON			
THORN ISLAND	166.67	2017	14
RHYL (URBAN)	169.05	2019	8
ESSO JETTY	169.67	2018	4
PEMBROKE DOCK	180.33	2022	50
THE AYRES NNR, ISLE	181.49	2017	2
OF MAN (POINT OF			
	100.50	0010	4.004
LIGHTHOUSE ISLAND	186.50	2019	1,094
MULL OF GALLOWAY RSPB	191.17	2015	4
NETHERTON FACTORY ROOFS	194.08	2019	2
LIVERPOOL 3 (URBAN)	198.50	2019	12
ST MARGARET'S	199.05	2022	94
ISLAND			
LIVERPOOL 1 (URBAN)	200.91	2019	8
LIVERPOOL 2 (URBAN)	200.91	2019	10
CALDEY ISLAND	201.05	2022	830
ST BEES HEAD RSPB	206.48	2020	0
BELFAST CITY CENTRE	208.23	2019	442
WALNEY URBAN	208.66	2019	22
GULLS			
PADIAN	208.81	2022	300
PHIL ROE'S FLAT	208.81	2022	150
TOLAN'S FLAT	208.81	2022	120
HAVERIGG PRISON (URBAN)	209.63	2019	150
MARCHON CHEMICAL WORKS	210.30	2018	0
SOUTH WALNEY	211.59	2022	1,060
PARK ROAD IND. EST.	213.56	2019	194
RIBBLE ESTUARY	213.68	2021	8.978
HENSINGHAM	213.72	2018	46
MORESBY PARKS	213.72	2018	0
WHITEHAVEN TOWN CENTRE	213.72	2018	60

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
RAMPSIDE GAS	214.25	2022	300
TERMINAL			
BLACK LOCH 1	215.31	2021	4
FLEETWOOD TOWN	215.79	2019	18
ASKAM-IN-FURNESS	217.22	2019	76
(URBAN)			
WEST WALL TO W&SW	220.64	2022	100
OF WESTON POINT			
ARNABY MARSH	222.05	2018	0
MOSSBAY (URBAN)	222.13	2019	14
LITTLE ROSS	223.88	2018	8
ISLANDS OF FLEET	227.15	2018	16
CHAPEL ISLAND	229.74	2018	44
HODBARROW RSPB	232.15	2022	4
Total breeding adults			34,945

Table 6.5:Common tern colonies within mean-maximum forging range + 1 SD (26.9 km – Woodward et al.,
2019) of array site

	Distance from array site	Count	Count
Colony name	(km)	date	(ind)
DALKEY ISLAND SPA INCLUDING LAMB ISLAND			
AND MAIDEN ROCK	22.21	2017	30
SOUTH DUBLIN BAY AND RIVER TOLKA			
ESTUARY SPA / DUBLIN PORT	26.46	2016	988
Total breeding adults			1,018

 Table 6.6:
 Arctic tern colonies within mean-maximum forging range + 1 SD (40.5 km – Woodward et al., 2019) of array site

Colony Name	Distance from array site (km)	Count date	Count (ind)
DALKEY ISLAND SPA INCLUDING LAMB ISLAND AND MAIDEN			
ROCK	22.21	2016	4
SOUTH DUBLIN BAY AND RIVER TOLKA ESTUARY SPA /			
DUBLIN PORT	26.46	2016	18
Total breeding adults			22

Source: <Insert Source or notes>

Table 6.7:	Guillemot colonies within mean-maximum forging range + 1 SD (153.7 km – Woodward et al., 2019)
	of array site

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
WICKLOW HEAD	11.24	2023	897
BRAY HEAD	17.49	2015	1,413
HOWTH HEAD	29.97	2015	871
IRELAND'S EYE	33.97	2015	4,410
LAMBAY	43.14	2015	59,983
BARDSEY ISLAND	73.25	2019	2,826
MAEN DU			
(ABERDARON COAST			
NOT IN SPA)	73.77	2016	40
BRAICH ANELOG			
	70.04	0040	10
	73.94	2016	10
LLEYN PENINSULA			
(INC. ST TUDWALLS			
CILAN. EXCLUDING			
CARREG Y LLAM)	76.46	2016	3,295
SOUTH STACK CLIFFS			
RSPB	78.21	2021	7,592
YNYSOEDD GWYLAN	79.43	2019	162
CARREG Y LLAM	86.31	2021	13,914
MIDDLE MOUSE	100.25	2016	5,550
GREAT SALTEE			
ISLAND	126.05	2015	25,851
CALF OF MAN	127.58	2017	124
BISHOP AND CLERKS			
ISLANDS	130.04	2018	48
PORT ST MARY -			
SOUND	130.65	2017	3,961
PUFFIN ISLAND SPA			
(WALES)	133.05	2022	4,200
RAMSEY ISLAND	134.87	2021	5,395
CARDIGAN COAST	136.07	2018	8,666
GREAT ORME	142.23	2022	1,029
LITTLE ORME	148.64	2022	2,322
SKOMER	150.53	2022	22,058
MIDLAND ISLE	152.36	2022	455
Total breeding adults			175,072

Table 6.8:	Razorbill colonies within mean-maximum forging range + 1 SD (164.6 km – Woodward et al., 2019)
	of array site

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
WICKLOW HEAD	11.24	2023	276
BRAY HEAD	17.49	2010	150
HOWTH HEAD	29.97	2015	279
IRELAND'S EYE	33.97	2015	1,600
LAMBAY	43.14	2015	7,353
BARDSEY ISLAND	73.25	2019	3,834
MAEN DU	73.77	2016	65
BRAICH ANELOG (ABERDARON COAST	73 94	2016	25
GOGARTH	76.46	2016	18
LLEYN PENINSULA (INC. ST TUDWALLS ISLAND AND TRWYN CILAN, EXCLUDING			
CARREG Y LLAM)	76.46	2016	292
ABRAHAM'S BOSOM	77.04	2016	83
SOUTH STACK CLIFFS RSPB	78.21	2021	1,378
YNYSOEDD GWYLAN (FAWR AND BACH			
TOTAL)	79.43	2019	13
CARREG Y LLAM	86.31	2021	438
THE SKERRIES RSPB	88.84	2017	3
PANT YR EGLWYS	90.01	2016	0
MIDDLE MOUSE	100.25	2016	455
POINT LYNAS	110.50	2016	9
LITTLE SALTEE	123.81	2015	850
GREAT SALTEE			
ISLAND	126.05	2015	5,669
CALF OF MAN	127.58	2017	108
SOUND - PORT ERIN	127.58	2017	14
PORT ST MARY -			
SOUND	130.65	2017	293
BRADDA - FLESHWICK	131.41	2017	27
FLESHWICK - STROIN VUIGH	134.82	2017	3
PORT SODERICK - PORT GRENAUGH	141.04	2017	44

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
GREAT ORME	142.23	2022	254
MARINE DRIVE (IOM)	144.69	2017	56
LITTLE ORME	148.64	2022	40
ARDNAMULT	149.64	2018	5
Total breeding adults			23,634

 Table 6.9:
 Puffin colonies within mean-maximum forging range + 1 SD (265.4 km – Woodward *et al.*, 2019) of array site

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
IRELAND'S EYE	33.97	2016	12
LAMBAY	43.14	2015	288
BARDSEY ISLAND	73.25	2019	282
SOUTH STACK CLIFFS RSPB	78.21	2022	10
YNYSOEDD GWYLAN (FAWR AND BACH TOTAL)	79.43	2019	1,238
THE SKERRIES RSPB	88.84	2023	584
LITTLE SALTEE ISLAND	123.81	2016	540
GREAT SALTEE ISLAND	126.05	2021	1,098
RAMSEY ISLAND	134.87	2021	55
SKOMER	150.53	2022	36,074
MIDLAND ISLAND	152.36	2022	262
SKOKHOLM	155.53	2023	12,192
COPELAND ISLANDS	183.08	2019	212
ST BEES HEAD	206.48	2023	2
GOBBINS	208.05	2019	54
LUNDY ISLAND	233.10	2023	1,335
Total breeding adults			54,480

 Table 6.10:
 Manx shearwater colonies within mean-maximum forging range + 1 SD (2365.5 km – Woodward et al., 2019) of array site (UK and Ireland only)

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
BARDSEY ISLAND	73.25	2001	16,183
CALF OF MAN	127.58	2014	848
CONNEMARA ISLANDS	649.14	2001	6,572
COPELAND ISLANDS	183.08	2007	9,700

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
EIGG	463.18	1999	500
GREAT BLASKET ISLAND	474.65	2001	7,168
GREAT SALTEE ISLAND	126.05	2002	300
GREAT SKELLIG	442.06	2001	1,476
INISHNABRO	473.13	2000	11,222
INISHSHARK	653.24	2001	102
INISHTOOSKERT	518.20	2000	19,392
INISHVICKILLANE	472.72	2001	1,286
LITTLE SALTEE	123.81	2001	200
LUNDY	233.10	2017	11,008
MIDLAND ISLAND	152.36	2018	33,096
PUFFIN ISLAND (KERRY)	442.16	2000	12,658
RAMSEY ISLAND	134.87	2022	12,450
SANDA ISLANDS	252.50	2006	600
SCARIFF ISLAND	425.85	2000	3,920
SKOKHOLM	155.53	2018	177,890
SKOMER	150.53	2018	699,326
ST KILDA	604.11	1999	9,606
TRESHNISH ISLES SPA	404.79	2018	3,984
AILSA CRAIG SPA	251.54	2018	40
ISLES OF SCILLY - GUGH	353.88	2022	160
ISLES OF SCILLY - ANNET	353.88	2015	458
ISLES OF SCILLY - BRYHER	353.88	2015	78
ISLES OF SCILLY - TRESCO	353.88	2015	92
ISLES OF SCILLY - ST AGNES	353.88	2022	130
ISLES OF SCILLY - ST HELENS	353.88	2022	248
ISLES OF SCILLY - ST			
MARTIN'S	353.88	2015	52
HIGH ISLAND	327.01	2015	1,636
ISLES OF SCILLY - ROUND			
ISLAND	353.88	2015	156
ISLES OF SCILLY - SHIPMAN			
HEAD	353.88	2015	78
ISLES OF SCILLY - GREAT		.	_
GANILLY	353.88	2015	2
DEENISH ISLAND	425.85	2000	702
RUM SPA	454.38	2001	240,000

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
Total breeding adults			1,283,319

Table 6.11: Gannet colonies within mean-maximum forging range + 1 SD (509.4 km – Woodward *et al.*, 2019) of array site

	Distance from array		
Colony name	site (km)	Count date	Count (ind)
IRELAND'S EYE	33.97	2015	700
LAMBAY	43.14	2015	1,852
MIDDLE MOUSE	100.25	2022	42
GREAT SALTEE ISLAND	126.05	2014	9,444
GRASSHOLM	143.31	2015	72,022
SCAR ROCKS	207.38	2014	4,752
GARVAN ISLES	213.56	2016	60
AILSA CRAIG	251.54	2014	66,452
BULL ROCK	417.78	2014	12,776
LITTLE SKELLIG	439.48	2014	70,588
BERNERAY	474.96	2021	30
Total breeding adults			238,718

 Table 6.12:
 Cormorant colonies within mean-maximum forging range + 1 SD (33.9 km – Woodward *et al.*, 2019) of array site

Colony name	Distance from array site (km)		Count date	(Count (ind)
BRAY HEAD	17.49	2010		124	
Total breeding adults				124	

 Table 6.13:
 Shag colonies within mean-maximum forging range + 1 SD (23.7 km – Woodward et al., 2019) of array site

Colony name	Distance from array site (km)	Count date	Count (ind)
WICKLOW HEAD	11.24	2023	98
BRAY HEAD	17.49	2015	30
Total breeding adults			128

Creating a better environment

naturalpower.com sayhello@naturalpower.com

years

For full details on our ISO and other certifications, please visit our website.

NATURAL POWER CONSULTANTS LIMITED, THE NATURAL POWER CONSULTANTS LIMITED, NATURAL POWER SARL, NATURAL POWER CONSULTANTS (IRELAND) LIMITED, NATURAL POWER LLC, NATURAL POWER S.A, NATURAL POWER SERVICES LIMITED AND NATURAL POWER OPERATIONS LIMITED (collectively referred to as "NATURAL POWER") accept no responsibility or liability for any use which is made of this document other than by the Client for the purpose for which it was originally commissioned and prepared. The Client shall treat all information in the document as confidential. No representation is made regarding the completeness, methodology or current status of any material referred to in this document. All facts and figures are correct at time of print. All rights reserved. VENTOS® is a registered trademark of NATURAL POWER. Melogale™, WindCentre™, ControlCentre™, ForeSite™, vuWind™, WindManager™ and OceanPod™ are trademarks of NATURAL POWER.

No part of this document or translations of it may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopying, recording or any other information storage and retrieval system, without prior permission in writing from Natural Power. All facts and figures correct at time of print. All rights reserved. © Copyright 2020.